Advertisement

The Roles of IL-22 and Its Related Family Members in the Pathogenesis of Psoriasis

  • Patricia Valdez
  • Wenjun Ouyang
Chapter

Abstract

IL-22 is a TH17 cytokine. It belongs to IL-10 family of cytokines that also includes IL-10, IL-19, IL-20, IL-24, and IL-26. IL-26 is also produced by TH17 cells, while IL-24 is a TH2 cytokine. All of these cytokines can also be produced by other leukocytes. Cytokine networks play essential roles in the pathogenesis of psoriasis. In psoriatic skin, the expression of IL-19, IL-20, IL-22, IL-24 and IL-26 is elevated. Infiltrating immune cells are the primary cellular sources. However, the receptors for these cytokines are expressed mainly on epithelial cells, including keratinocytes, but not on leukocytes. In psoriatic skin, these cytokines induce epidermal keratinocytes to display many pathogenic features, including hyperplasia, abnormal differentiation, and overexpression of psoriasin and other psoriatic markers. These cytokines mediate the crosstalk between infiltrating immune cells and epidermal keratinocytes.

Keywords

TH17 Cell Epidermal Keratinocytes Psoriatic Skin Inflammatory Skin Disease Lesional Psoriatic Skin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Aggarwal, S., N. Ghilardi, et al. (2003). “Interleukin-23 promotes a distinct CD4 T cell activation state characterized by the production of interleukin-17.” J Biol Chem 278(3): 1910–4.PubMedCrossRefGoogle Scholar
  2. Aggarwal, S., M. H. Xie, et al. (2001). “Acinar cells of the pancreas are a target of interleukin-22.” J Interferon Cytokine Res 21(12): 1047–53.PubMedCrossRefGoogle Scholar
  3. Aujla, S. J., Y. R. Chan, et al. (2008). “IL-22 mediates mucosal host defense against Gram-negative bacterial pneumonia.” Nat Med 14(3): 275–81.PubMedCrossRefGoogle Scholar
  4. Awasthi, A., L. Riol-Blanco, et al. (2009). “Cutting edge: IL-23 receptor gfp reporter mice reveal distinct populations of IL-17-producing cells.” J Immunol 182(10): 5904–8.PubMedCrossRefGoogle Scholar
  5. Bettaccini, A. A., A. Baj, et al. (2005). “Proliferative activity of extracellular HIV-1 Tat protein in human epithelial cells: expression profile of pathogenetically relevant genes.” BMC Microbiol 5(1): 20.PubMedCrossRefGoogle Scholar
  6. Bettelli, E., Y. Carrier, et al. (2006). “Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells.” Nature 441(7090): 235–8.PubMedCrossRefGoogle Scholar
  7. Blumberg, H., D. Conklin, et al. (2001). “Interleukin 20: discovery, receptor identification, and role in epidermal function.” Cell 104(1): 9–19.PubMedCrossRefGoogle Scholar
  8. Boniface, K., F. X. Bernard, et al. (2005). “IL-22 inhibits epidermal differentiation and induces proinflammatory gene expression and migration of human keratinocytes.” J Immunol 174(6): 3695–702.PubMedGoogle Scholar
  9. Boniface, K., E. Guignouard, et al. (2007). “A role for T cell-derived interleukin 22 in psoriatic skin inflammation.” Clin Exp Immunol 150(3): 407–15.PubMedCrossRefGoogle Scholar
  10. Caproni, M., E. Antiga, et al. (2009). “Serum levels of IL-17 and IL-22 are reduced by etanercept, but not by acitretin, in patients with psoriasis: a randomized-controlled trial.” J Clin Immunol 29(2): 210–4.PubMedCrossRefGoogle Scholar
  11. Caudell, E. G., J. B. Mumm, et al. (2002). “The protein product of the tumor suppressor gene, melanoma differentiation-associated gene 7, exhibits immunostimulatory activity and is designated IL-24.” J Immunol 168(12): 6041–6.PubMedGoogle Scholar
  12. Cella, M., A. Fuchs, et al. (2009). “A human natural killer cell subset provides an innate source of IL-22 for mucosal immunity.” Nature 457(7230): 722–5.PubMedCrossRefGoogle Scholar
  13. Chan, J. R., W. Blumenschein, et al. (2006). “IL-23 stimulates epidermal hyperplasia via TNF and IL- 20R2-dependent mechanisms with implications for psoriasis pathogenesis.” J Exp Med 203(12): 2577–87.PubMedCrossRefGoogle Scholar
  14. Chang, C., E. Magracheva, et al. (2003). “Crystal structure of interleukin-19 defines a new sub-family of helical cytokines.” J Biol Chem 278(5): 3308–13.PubMedCrossRefGoogle Scholar
  15. Chung, Y., X. Yang, et al. (2006). “Expression and regulation of IL-22 in the IL-17-producing CD4+ T lymphocytes.” Cell Res 16(11): 902–7.PubMedCrossRefGoogle Scholar
  16. Colonna, M. (2009). “Interleukin-22-producing natural killer cells and lymphoid tissue inducer-like cells in mucosal immunity.” Immunity 31(1): 15–23.PubMedCrossRefGoogle Scholar
  17. Cua, D. J., J. Sherlock, et al. (2003). “Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain.” Nature 421(6924): 744–8.PubMedCrossRefGoogle Scholar
  18. Cupedo, T., N. K. Crellin, et al. (2009). “Human fetal lymphoid tissue-inducer cells are interleukin 17-producing precursors to RORC+ CD127+ natural killer-like cells.” Nat Immunol 10(1): 66–74.PubMedCrossRefGoogle Scholar
  19. Duhen, T., R. Geiger, et al. (2009). “Production of interleukin 22 but not interleukin 17 by a subset of human skin-homing memory T cells.” Nat Immunol 10(8): 857–63.PubMedCrossRefGoogle Scholar
  20. Dumoutier, L., C. Leemans, et al. (2001a). “Cutting edge: STAT activation by IL-19, IL-20 and mda-7 through IL-20 receptor complexes of two types.” J Immunol 167(7): 3545–9.PubMedGoogle Scholar
  21. Dumoutier, L., D. Lejeune, et al. (2001b). “Cloning and characterization of IL-22 binding protein, a natural antagonist of IL-10-related T cell-derived inducible factor/IL-22.” J Immunol 166(12): 7090–5.PubMedGoogle Scholar
  22. Dumoutier, L., J. Louahed, et al. (2000a). “Cloning and characterization of IL-10-related T cell-derived inducible factor (IL-TIF), a novel cytokine structurally related to IL-10 and inducible by IL-9.” J Immunol 164(4): 1814–9.PubMedGoogle Scholar
  23. Dumoutier, L., A. Tounsi, et al. (2004). “Role of the interleukin (IL)-28 receptor tyrosine residues for antiviral and antiproliferative activity of IL-29/interferon-lambda 1: similarities with type I interferon signaling.” J Biol Chem 279(31): 32269–74.PubMedCrossRefGoogle Scholar
  24. Dumoutier, L., E. Van Roost, et al. (2000b). “IL-TIF/IL-22: genomic organization and mapping of the human and mouse genes.” Genes Immun 1(8): 488–94.PubMedCrossRefGoogle Scholar
  25. Eyerich, S., K. Eyerich, et al. (2009). “Th22 cells represent a distinct human T cell subset involved in epidermal immunity and remodeling.” J Clin Invest 119(12): 3573–85.PubMedGoogle Scholar
  26. Fisher, P. B. (2005). “Is mda-7/IL-24 a “magic bullet” for cancer?” Cancer Res 65(22): 10128–38.PubMedCrossRefGoogle Scholar
  27. Fujita, H., K. E. Nograles, et al. (2009). “Human Langerhans cells induce distinct IL-22-producing CD4+ T cells lacking IL-17 production.” Proc Natl Acad Sci USA 106(51): 21795–800.PubMedCrossRefGoogle Scholar
  28. Gallagher, G., H. Dickensheets, et al. (2000). “Cloning, expression and initial characterization of interleukin-19 (IL-19), a novel homologue of human interleukin-10 (IL-10).” Genes Immun 1(7): 442–50.PubMedCrossRefGoogle Scholar
  29. Ghoreschi, K., P. Thomas, et al. (2003). “Interleukin-4 therapy of psoriasis induces Th2 responses and improves human autoimmune disease.” Nat Med 9(1): 40–6.PubMedCrossRefGoogle Scholar
  30. He, M. and P. Liang (2010) “IL-24 Transgenic Mice: In Vivo Evidence of Overlapping Functions for IL-20, IL-22, and IL-24 in the Epidermis.” J Immunol 184(4):1793–8.Google Scholar
  31. Hor, S., H. Pirzer, et al. (2004). “The T-cell lymphokine interleukin-26 targets epithelial cells through the interleukin-20 receptor 1 and interleukin-10 receptor 2 chains.” J Biol Chem 279(32): 33343–51.PubMedCrossRefGoogle Scholar
  32. Hosoi, T., S. Wada, et al. (2004). “Bacterial endotoxin induces IL-20 expression in the glial cells.” Brain Res Mol Brain Res 130(1-2): 23–9.PubMedCrossRefGoogle Scholar
  33. Huang, F., S. Wachi, et al. (2008). “Potentiation of IL-19 expression in airway epithelia by IL-17A and IL- 4/IL-13: important implications in asthma.” J Allergy Clin Immunol 121(6): 1415–21, 1421 e1-3.Google Scholar
  34. Hummelshoj, L., L. P. Ryder, et al. (2006). “The role of the interleukin-10 subfamily members in immunoglobulin production by human B cells.” Scand J Immunol 64(1): 40–7.PubMedCrossRefGoogle Scholar
  35. Hunt, D. W., W. A. Boivin, et al. (2006). “Ultraviolet B light stimulates interleukin-20 expression by human epithelial keratinocytes.” Photochem Photobiol 82(5): 1292–300.PubMedCrossRefGoogle Scholar
  36. Infante-Duarte, C., H. F. Horton, et al. (2000). “Microbial lipopeptides induce the production of IL-17 in Th cells.” J Immunol 165(11): 6107–15.PubMedGoogle Scholar
  37. Jiang, H., J. J. Lin, et al. (1995). “Subtraction hybridization identifies a novel melanoma differentiation associated gene, mda-7, modulated during human melanoma differentiation, growth and progression.” Oncogene 11(12): 2477–86.PubMedGoogle Scholar
  38. Jones, E. A. and R. A. Flavell (2005). “Distal enhancer elements transcribe intergenic RNA in the IL-10 family gene cluster.” J Immunol 175(11): 7437–46.PubMedGoogle Scholar
  39. Jordan, W. J., J. Eskdale, et al. (2005). “Human IL-19 regulates immunity through auto-induction of IL-19 and production of IL-10.” Eur J Immunol 35(5): 1576–82.PubMedCrossRefGoogle Scholar
  40. Kagami, S., H. L. Rizzo, et al. (2009). “Circulating Th17, Th22, and Th1 Cells Are Increased in Psoriasis.” J Invest Dermatol 130(5): 1373–83.PubMedCrossRefGoogle Scholar
  41. Kastelein, R. A., C. A. Hunter, et al. (2007). “Discovery and biology of IL-23 and IL-27: related but functionally distinct regulators of inflammation.” Annu Rev Immunol 25: 221–42.PubMedCrossRefGoogle Scholar
  42. Kingo, K., S. Koks, et al. (2004). “Polymorphisms in the interleukin-20 gene: relationships to plaque-type psoriasis.” Genes Immun 5(2): 117–21.PubMedCrossRefGoogle Scholar
  43. Kingo, K., R. Mossner, et al. (2008). “Association analysis of IL20RA and IL20RB genes in psoriasis.” Genes Immun 9(5): 445–51.PubMedCrossRefGoogle Scholar
  44. Knappe, A., S. Hor, et al. (2000). “Induction of a novel cellular homolog of interleukin-10, AK155, by transformation of T lymphocytes with herpesvirus saimiri.” J Virol 74(8): 3881–7.PubMedCrossRefGoogle Scholar
  45. Koks, S., K. Kingo, et al. (2004). “Combined haplotype analysis of the interleukin-19 and -20 genes: relationship to plaque-type psoriasis.” Genes Immun 5(8): 662–7.PubMedCrossRefGoogle Scholar
  46. Koks, S., K. Kingo, et al. (2005). “Possible relations between the polymorphisms of the cytokines IL-19, IL-20 and IL-24 and plaque-type psoriasis.” Genes Immun 6(5): 407–15.PubMedCrossRefGoogle Scholar
  47. Kopp, T., P. Lenz, et al. (2003). “IL-23 production by cosecretion of endogenous p19 and transgenic p40 in keratin 14/p40 transgenic mice: evidence for enhanced cutaneous immunity.” J Immunol 170(11): 5438–44.PubMedGoogle Scholar
  48. Korn, T., E. Bettelli, et al. (2007). “IL-21 initiates an alternative pathway to induce proinflammatory T(H)17 cells.” Nature 448(7152): 484–7.PubMedCrossRefGoogle Scholar
  49. Korn, T., E. Bettelli, et al. (2009). “IL-17 and Th17 Cells.” Annu Rev Immunol 27: 485–517.PubMedCrossRefGoogle Scholar
  50. Kotenko, S. V., L. S. Izotova, et al. (2001a). “Identification of the functional interleukin-22 (IL-22) receptor complex: the IL-10R2 chain (IL-10Rbeta ) is a common chain of both the IL-10 and IL-22 (IL-10-related T cell-derived inducible factor, IL-TIF) receptor complexes.” J Biol Chem 276(4): 2725–32.PubMedCrossRefGoogle Scholar
  51. Kotenko, S. V., L. S. Izotova, et al. (2001b). “Identification, cloning, and characterization of a novel soluble receptor that binds IL-22 and neutralizes its activity.” J Immunol 166(12): 7096–103.PubMedGoogle Scholar
  52. Kreis, S., D. Philippidou, et al. (2008). “IL-24: a classic cytokine and/or a potential cure for cancer?” J Cell Mol Med. 12(6A): 2505–10.Google Scholar
  53. Kreis, S., D. Philippidou, et al. (2007). “Recombinant interleukin-24 lacks apoptosis-inducing properties in melanoma cells.” PLoS ONE 2(12): e1300.PubMedCrossRefGoogle Scholar
  54. Krueger, G. G., R. G. Langley, et al. (2007). “A human interleukin-12/23 monoclonal antibody for the treatment of psoriasis.” N Engl J Med 356(6): 580–92.PubMedCrossRefGoogle Scholar
  55. Kunz, S., K. Wolk, et al. (2006). “Interleukin (IL)-19, IL-20 and IL-24 are produced by and act on keratinocytes and are distinct from classical ILs.” Exp Dermatol 15(12): 991–1004.PubMedCrossRefGoogle Scholar
  56. Langrish, C. L., Y. Chen, et al. (2005). “IL-23 drives a pathogenic T cell population that induces autoimmune inflammation.” J Exp Med 201(2): 233-40.PubMedCrossRefGoogle Scholar
  57. Lee, E., W. L. Trepicchio, et al. (2004). “Increased expression of interleukin 23 p19 and p40 in lesional skin of patients with psoriasis vulgaris.” J Exp Med 199(1): 125–30.PubMedCrossRefGoogle Scholar
  58. Lejeune, D., L. Dumoutier, et al. (2002). “Interleukin-22 (IL-22) activates the JAK/STAT, ERK, JNK, and p38 MAP kinase pathways in a rat hepatoma cell line. Pathways that are shared with and distinct from IL-10.” J Biol Chem 277(37): 33676–82.PubMedCrossRefGoogle Scholar
  59. Liang, S. C., X. Y. Tan, et al. (2006). “Interleukin (IL)-22 and IL-17 are coexpressed by Th17 cells and cooperatively enhance expression of antimicrobial peptides.” J Exp Med 203(10): 2271–9.PubMedCrossRefGoogle Scholar
  60. Liao, S. C., Y. C. Cheng, et al. (2004). “IL-19 induced Th2 cytokines and was up-regulated in asthma patients.” J Immunol 173(11): 6712–8.PubMedGoogle Scholar
  61. Liao, Y. C., W. G. Liang, et al. (2002). “IL-19 induces production of IL-6 and TNF-alpha and results in cell apoptosis through TNF-alpha.” J Immunol 169(8): 4288–97.PubMedGoogle Scholar
  62. Liu, L., C. Ding, et al. (2003). “Selective enhancement of multipotential hematopoietic progenitors in vitro and in vivo by IL-20.” Blood 102(9): 3206–9.PubMedCrossRefGoogle Scholar
  63. Lowes, M. A., A. M. Bowcock, et al. (2007). “Pathogenesis and therapy of psoriasis.” Nature 445(7130): 866–73.PubMedCrossRefGoogle Scholar
  64. Lowes, M. A., T. Kikuchi, et al. (2008). “Psoriasis vulgaris lesions contain discrete populations of Th1 and Th17 T cells.” J Invest Dermatol 128(5): 1207–11.PubMedCrossRefGoogle Scholar
  65. Luci, C., A. Reynders, et al. (2009). “Influence of the transcription factor RORgammat on the development of NKp46+ cell populations in gut and skin.” Nat Immunol 10(1): 75–82.PubMedCrossRefGoogle Scholar
  66. Ma, H. L., S. Liang, et al. (2008). “IL-22 is required for Th17 cell-mediated pathology in a mouse model of psoriasis-like skin inflammation.” J Clin Invest 118(2): 597–607.PubMedGoogle Scholar
  67. Mangan, P. R., L. E. Harrington, et al. (2006). “Transforming growth factor-beta induces development of the T(H)17 lineage.” Nature 441(7090): 231–4.PubMedCrossRefGoogle Scholar
  68. Martin, B., K. Hirota, et al. (2009). “Interleukin-17-producing gammadelta T cells selectively expand in response to pathogen products and environmental signals.” Immunity 31(2): 321–30.PubMedCrossRefGoogle Scholar
  69. Moore, K. W., R. de Waal Malefyt, et al. (2001). “Interleukin-10 and the interleukin-10 receptor.” Annu Rev Immunol 19: 683–765.PubMedCrossRefGoogle Scholar
  70. Nagalakshmi, M. L., A. Rascle, et al. (2004). “Interleukin-22 activates STAT3 and induces IL-10 by colon epithelial cells.” Int Immunopharmacol 4(5): 679–91.PubMedCrossRefGoogle Scholar
  71. Nickoloff, B. J. and F. O. Nestle (2004). “Recent insights into the immunopathogenesis of psoriasis provide new therapeutic opportunities.” J Clin Invest 113(12): 1664–75.PubMedGoogle Scholar
  72. Nograles, K. E., L. C. Zaba, et al. (2009). “IL-22-producing T22 T cells account for upregulated IL-22 in atopic dermatitis despite reduced IL-17-producing TH17 T cells.” J Allergy Clin Immunol 123(6): 1244–52 e2.Google Scholar
  73. Oral, H. B., S. V. Kotenko, et al. (2006). “Regulation of T cells and cytokines by the interleukin-10 (IL-10)-family cytokines IL-19, IL-20, IL-22, IL-24 and IL-26.” Eur J Immunol 36(2): 380–8.PubMedCrossRefGoogle Scholar
  74. Otkjaer, K., K. Kragballe, et al. (2005). “The dynamics of gene expression of interleukin-19 and interleukin-20 and their receptors in psoriasis.” Br J Dermatol 153(5): 911–8.PubMedCrossRefGoogle Scholar
  75. Otkjaer, K., K. Kragballe, et al. (2007). “IL-20 gene expression is induced by IL-1beta through mitogenactivated protein kinase and NF-kappaB-dependent mechanisms.” J Invest Dermatol 127(6): 1326–36.PubMedCrossRefGoogle Scholar
  76. Ouyang, W., J. K. Kolls, et al. (2008). “The biological functions of T helper 17 cell effector cytokines in inflammation.” Immunity 28(4): 454–67.PubMedCrossRefGoogle Scholar
  77. Pan, H., F. Hong, et al. (2004). “Hydrodynamic gene delivery of interleukin-22 protects the mouse liver from concanavalin A-, carbon tetrachloride-, and Fas ligand-induced injury via activation of STAT3.” Cell Mol Immunol 1(1): 43–9.PubMedGoogle Scholar
  78. Parrish-Novak, J., W. Xu, et al. (2002). “Interleukins 19, 20, and 24 signal through two distinct receptor complexes. Differences in receptor-ligand interactions mediate unique biological functions.” J Biol Chem 277(49): 47517–23.PubMedCrossRefGoogle Scholar
  79. Pene, J., S. Chevalier, et al. (2008). “Chronically inflamed human tissues are infiltrated by highly differentiated Th17 lymphocytes.” J Immunol 180(11): 7423-30.PubMedGoogle Scholar
  80. Pestka, S., C. D. Krause, et al. (2004). “Interleukin-10 and related cytokines and receptors.” Annu Rev Immunol 22: 929–79.PubMedCrossRefGoogle Scholar
  81. Pickert, G., C. Neufert, et al. (2009). “STAT3 links IL-22 signaling in intestinal epithelial cells to mucosal wound healing.” J Exp Med 206(7): 1465–72.PubMedCrossRefGoogle Scholar
  82. Radaeva, S., R. Sun, et al. (2004). “Interleukin 22 (IL-22) plays a protective role in T cell-mediated murine hepatitis: IL-22 is a survival factor for hepatocytes via STAT3 activation.” Hepatology 39(5): 1332–42.PubMedCrossRefGoogle Scholar
  83. Romer, J., E. Hasselager, et al. (2003). “Epidermal overexpression of interleukin-19 and -20 mRNA in psoriatic skin disappears after short-term treatment with cyclosporine a or calcipotriol.” J Invest Dermatol 121(6): 1306–11.PubMedCrossRefGoogle Scholar
  84. Sa, S. M., P. A. Valdez, et al. (2007). “The effects of IL-20 subfamily cytokines on reconstituted human epidermis suggest potential roles in cutaneous innate defense and pathogenic adaptive immunity in psoriasis.” J Immunol 178(4): 2229–40.PubMedGoogle Scholar
  85. Sakurai, N., T. Kuroiwa, et al. (2008). “Expression of IL-19 and its receptors in RA: potential role for synovial hyperplasia formation.” Rheumatology (Oxford) 47(6): 815–20.CrossRefGoogle Scholar
  86. Sanos, S. L., V. L. Bui, et al. (2009). “RORgammat and commensal microflora are required for the differentiation of mucosal interleukin 22-producing NKp46+ cells.” Nat Immunol 10(1): 83–91.PubMedCrossRefGoogle Scholar
  87. Sarkar, D., I. V. Lebedeva, et al. (2007). “Melanoma differentiation associated gene-7 (mda-7)/IL-24: a ‘magic bullet’ for cancer therapy?” Expert Opin Biol Ther 7(5): 577–86.PubMedCrossRefGoogle Scholar
  88. Satoh-Takayama, N., C. A. Vosshenrich, et al. (2008). “Microbial flora drives interleukin 22 production in intestinal NKp46+ cells that provide innate mucosal immune defense.” Immunity 29(6): 958–70.PubMedCrossRefGoogle Scholar
  89. Schaefer, G., C. Venkataraman, et al. (2001). “Cutting edge: FISP (IL-4-induced secreted protein), a novel cytokine-like molecule secreted by Th2 cells.” J Immunol 166(10): 5859–63.PubMedGoogle Scholar
  90. Sheikh, F., V. V. Baurin, et al. (2004). “Cutting edge: IL-26 signals through a novel receptor complex composed of IL-20 receptor 1 and IL-10 receptor 2.” J Immunol 172(4): 2006–10.PubMedGoogle Scholar
  91. Sheppard, P., W. Kindsvogel, et al. (2003). “IL-28, IL-29 and their class II cytokine receptor IL-28R.” Nat Immunol 4(1): 63–8.PubMedCrossRefGoogle Scholar
  92. Stenderup, K., C. Rosada, et al. (2009). “Interleukin-20 plays a critical role in maintenance and development of psoriasis in the human xenograft transplantation model.” Br J Dermatol 160(2): 284–96.PubMedCrossRefGoogle Scholar
  93. Sugimoto, K., A. Ogawa, et al. (2008). “IL-22 ameliorates intestinal inflammation in a mouse model of ulcerative colitis.” J Clin Invest 118(2): 534–44.PubMedGoogle Scholar
  94. Sutton, C. E., S. J. Lalor, et al. (2009). “Interleukin-1 and IL-23 induce innate IL-17 production from gammadelta T cells, amplifying Th17 responses and autoimmunity.” Immunity 31(2): 331–41.PubMedCrossRefGoogle Scholar
  95. Takatori, H., Y. Kanno, et al. (2009). “Lymphoid tissue inducer-like cells are an innate source of IL-17 and IL-22.” J Exp Med 206(1): 35–41.PubMedCrossRefGoogle Scholar
  96. Tohyama, M., Y. Hanakawa, et al. (2009). “IL-17 and IL-22 mediate IL-20 subfamily cytokine production in cultured keratinocytes via increased IL-22 receptor expression.” Eur J Immunol 39(10): 2779–88.PubMedCrossRefGoogle Scholar
  97. Trifari, S., C. D. Kaplan, et al. (2009). “Identification of a human helper T cell population that has abundant production of interleukin 22 and is distinct from T(H)-17, T(H)1 and T(H)2 cells.” Nat Immunol 10(8): 864–71.PubMedCrossRefGoogle Scholar
  98. Tritsaris, K., M. Myren, et al. (2007). “IL-20 is an arteriogenic cytokine that remodels collateral networks and improves functions of ischemic hind limbs.” Proc Natl Acad Sci U S A 104(39): 15364–9.PubMedCrossRefGoogle Scholar
  99. Veldhoen, M., R. J. Hocking, et al. (2006). “TGFbeta in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells.” Immunity 24(2): 179–89.PubMedCrossRefGoogle Scholar
  100. Wang, F., E. Lee, et al. (2006). “Prominent production of IL-20 by CD68+/CD11c+ myeloid-derived cells in psoriasis: Gene regulation and cellular effects.” J Invest Dermatol 126(7): 1590–9.PubMedCrossRefGoogle Scholar
  101. Wang, M., Z. Tan, et al. (2002). “Interleukin 24 (MDA-7/MOB-5) signals through two heterodimeric receptors, IL-22R1/IL-20R2 and IL-20R1/IL-20R2.” J Biol Chem 277(9): 7341–7.PubMedCrossRefGoogle Scholar
  102. Wegenka, U. M., N. Dikopoulos, et al. (2007). “The murine liver is a potential target organ for IL-19, IL-20 and IL-24: Type I Interferons and LPS regulate the expression of IL-20R2.”J Hepatol 46(2): 257–65.PubMedCrossRefGoogle Scholar
  103. Whittington, H. A., L. Armstrong, et al. (2004). “Interleukin-22: a potential immunomodulatory molecule in the lung.” Am J Respir Cell Mol Biol 31(2): 220–6.PubMedCrossRefGoogle Scholar
  104. Wolk, K., H. S. Haugen, et al. (2009a). “IL-22 and IL-20 are key mediators of the epidermal alterations in psoriasis while IL-17 and IFN-gamma are not.” J Mol Med 87(5): 523–36.PubMedCrossRefGoogle Scholar
  105. Wolk, K., S. Kunz, et al. (2002). “Cutting edge: immune cells as sources and targets of the IL-10 family members?” J Immunol 168(11): 5397–402.PubMedGoogle Scholar
  106. Wolk, K., S. Kunz, et al. (2004). “IL-22 increases the innate immunity of tissues.” Immunity 21(2): 241–54.PubMedCrossRefGoogle Scholar
  107. Wolk, K., E. Witte, et al. (2006). “IL-22 regulates the expression of genes responsible for antimicrobial defense, cellular differentiation, and mobility in keratinocytes: a potential role in psoriasis.” Eur J Immunol 36(5): 1309–23.PubMedCrossRefGoogle Scholar
  108. Wolk, K., E. Witte, et al. (2009b). “The Th17 cytokine IL-22 induces IL-20 production in keratinocytes: a novel immunological cascade with potential relevance in psoriasis.” Eur J Immunol 39(12): 3570–81.PubMedCrossRefGoogle Scholar
  109. Wolk, K., K. Witte, et al. (2008). “Maturing dendritic cells are an important source of IL-29 and IL-20 that may cooperatively increase the innate immunity of keratinocytes.” J Leukoc Biol 83(5): 1181–93.PubMedCrossRefGoogle Scholar
  110. Xie, M. H., S. Aggarwal, et al. (2000). “Interleukin (IL)-22, a novel human cytokine that signals through the interferon receptor-related proteins CRF2-4 and IL-22R.” J Biol Chem 275(40): 31335–9.PubMedCrossRefGoogle Scholar
  111. Xu, W., S. R. Presnell, et al. (2001). “A soluble class II cytokine receptor, IL-22RA2, is a naturally occurring IL-22 antagonist.” Proc Natl Acad Sci USA 98(17): 9511–6.PubMedCrossRefGoogle Scholar
  112. Yano, S., T. Banno, et al. (2008). “Transcriptional responses of human epidermal keratinocytes to cytokine interleukin-1.” J Cell Physiol 214(1): 1–13.PubMedCrossRefGoogle Scholar
  113. Zaba, L. C., I. Cardinale, et al. (2007). “Amelioration of epidermal hyperplasia by TNF inhibition is associated with reduced Th17 responses.” J Exp Med 204(13): 3183–94.PubMedCrossRefGoogle Scholar
  114. Zdanov, A. (2004). “Structural features of the interleukin-10 family of cytokines.” Curr Pharm Des 10(31): 3873–84.PubMedCrossRefGoogle Scholar
  115. Zenewicz, L. A., G. D. Yancopoulos, et al. (2007). “Interleukin-22 but not interleukin-17 provides protection to hepatocytes during acute liver inflammation.” Immunity 27(4): 647–59.PubMedCrossRefGoogle Scholar
  116. Zheng, Y., D. M. Danilenko, et al. (2007). “Interleukin-22, a T(H)17 cytokine, mediates IL-23-induced dermal inflammation and acanthosis.” Nature 445(7128): 648–51.PubMedCrossRefGoogle Scholar
  117. Zheng, Y., P. A. Valdez, et al. (2008). “Interleukin-22 mediates early host defense against attaching and effacing bacterial pathogens.” Nat Med 14(3): 282–9.PubMedCrossRefGoogle Scholar
  118. Zhong, H., Y. Wu, et al. (2006). “A2B adenosine receptors induce IL-19 from bronchial epithelial cells, resulting in TNF-alpha increase.” Am J Respir Cell Mol Biol 35(5): 587–92.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Immunology DepartmentGenentech, Inc.South San FranciscoUSA

Personalised recommendations