Skip to main content

LFT Bond Graph Model-Based Robust Fault Detection and Isolation

  • Chapter
  • First Online:
Bond Graph Modelling of Engineering Systems

Abstract

Diagnosis of uncertain systems has been the subject of several recent research works (Djeziri et al. Proceeding of the 2007 American Control Conference 3017–3022, 2007; Han et al. 15th IFAC World Congress 1887–1892, 2002; Henry and Zolghari Control Engineering Practice 14:1081–1097, 2006; Hsing-Chia and Hui-Kuo Engineering Applications of Artificial Intelligence 17:919–930, 2004; Ploix Ph.D. de I.N.P.L, C.R.A.N 1998; Yan and Edwards Automatica 43:1605–1614, 2007). This interest is reflected by the fact that physical systems are complex and non-stationary and require more security and performance. The bond graph model in LFT form allows the generation of analytical redundancy relations (ARRs) composed of two completely separated parts: a nominal part, which represents the residuals, and an uncertain part which serves for both the calculation of adaptive thresholds and sensitivity analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. A. Djeziri, R. Merzouki, B. Ould Bouamama, G. Dauphin Tanguy (2007). ‘Bond graph model based for robust fault diagnosis’. Proceeding of the 2007 American Control Conference New York City, USA. pp. 3017–3022.

    Google Scholar 

  2. Z. Han ,W. Li , S. L. Shah. (2002). ‘Fault detection and isolation in the presence of process uncertainties’. 15th IFAC World Congress. pp. 1887–1892.

    Google Scholar 

  3. D. Henry, A. Zolghari. (2006). ‘Norm-based design of robust FDI schemes for uncertain systems under feedback control: comparison of two approaches’. Control Engineering Practice 14, 1081–1097.

    Article  Google Scholar 

  4. K. Hsing-Chia, C. Hui-Kuo. (2004). ‘A new symbiotic evolution-based fuzzy- neural approach to fault diagnosis of marine propulsion systems.’ Engineering Applications of Artificial Intelligence, 17, 919–930.

    Article  Google Scholar 

  5. S. Ploix. (1998). ‘Diagnostic des systèmes incertains: l’approche bornante.’ Ph.D. de I.N.P.L, C.R.A.N

    Google Scholar 

  6. X. G. Yan, C. Edwards. (2007). ‘Nonlinear robust fault recognition and estimation using a sliding mode observer’. Automatica, 43, 1605–1614.

    Article  MathSciNet  MATH  Google Scholar 

  7. R. Redheffer. (1960). ‘On a certain linear fractional transformation’. EMJ. Maths and Physics, 39, 269–286.

    MathSciNet  Google Scholar 

  8. G. Dauphin-Tanguy. C. Si Kam (1999). ‘How to Model Parameter Uncertainties in a Bond Graph Framework’. ESS’99, Erlangen, Germany. pp. 121–125

    Google Scholar 

  9. A. Oustaloup. (1994). ‘La robustesse.’. Hermès, ISBN. 2.86601.442.1.

    Google Scholar 

  10. D. Alazard, C. Cumer, P. Apkarian, M. Gauvrit, G. Fereres. (1999). ‘Robustesse et Commande Optimale’. Cépadues-Editions, ISBN. 2.85428.516.6.

    Google Scholar 

  11. J. U. Thoma, B. Ould Bouamama. (2000). ‘Modelling and simulation in thermal and chemical engineering, bond graph approach’. Springer, Berlin.

    Google Scholar 

  12. D. Karnopp. (1990). ‘State variables and pseudo bond graph for compressible thermo-fluid systems’. Transaction of ASME, Journal of Dynamic Systems, Measurement and Control, 101(3), 201–204, September 1979.

    Article  Google Scholar 

  13. C. Sié Kam (2001). ‘Les Bond Graphs pour la Modélisation des Systèmes Linéaires Incertains’. Thèse de doctorat. USTLille1-ECLille. Décembre 2001. N° d’ordre 3065.

    Google Scholar 

  14. C. Sueur, G. Dauphin-Tanguy. (1989). ‘Structural controllability and observability of linear systems represented by bond graphs’. Journal of Franklin Institute, 326, 869–883.

    Article  MathSciNet  MATH  Google Scholar 

  15. C. Sié Kam , G. Dauphin-Tanguy. (2005). ‘Bond graph models of structured parameter uncertainties’. Journal of the Franklin Institute, 342, 379–399.

    Article  MATH  Google Scholar 

  16. B. Ould Bouamama, A.K. Samantaray, M. Staroswiecki, G. Dauphin-Tanguy. (2005). ‘Derivation of constraint relations from bond graph models for fault detection and isolation’. Proceedings of ICBGM’03 (International conference on bond graph modelling and simulation), New Orleans, LA, Simulation Series, vol. 35, no. 2, pp. 104–109. ISBN. 1-56555-257-1.

    Google Scholar 

  17. M. Basseville. (1998). ‘On-board element fault detection and isolation using the statistical local approach’. Automatica, 34, 1359–1373.

    Article  MATH  Google Scholar 

  18. O. Adort, D. Maquin, J. Ragot. (1999). ‘Fault detection with model parameter structured uncertainties’. European Control Conference ECC’99.

    Google Scholar 

  19. A. Johansson, M. Bask, T. Norlander. (2006). ‘Dynamic threshold generators for robust fault detection in linear systems with parameter uncertainty’. Automatica, 42, 1095–1106.

    Article  MathSciNet  MATH  Google Scholar 

  20. G. Dauphin-Tanguy. (2000). ‘Les bond graphs’. HERMES Science Publications, Paris, ISBN 2-7462-0158-5.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M.A. Djeziri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Djeziri, M., Bouamama, B.O., Dauphin-Tanguy, G., Merzouki, R. (2011). LFT Bond Graph Model-Based Robust Fault Detection and Isolation. In: Borutzky, W. (eds) Bond Graph Modelling of Engineering Systems. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9368-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-9368-7_3

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-9367-0

  • Online ISBN: 978-1-4419-9368-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics