Advertisement

Economy

  • Reiner KümmelEmail author
Chapter
Part of the The Frontiers Collection book series (FRONTCOLL)

Abstract

Capital and labor have been traditionally considered the factors that produce the wealth of nations, which is measured by the gross domestic product (GDP). After the oil price shocks of the 1970s and 1980s, energy was occasionally taken into account as a third factor of production. But mainstream economics has the problem that it can explain only about half, or less, of the observed economic growth of industrialized countries by the growth of the production factors. The other half, or more, is attributed to technological progress. This is just a word for what is not understood and is also called Manna from Heaven. The cause of the problem is the cost-share theorem, according to which the share of a factor in total factor cost should be equal to the factor’s productive power. The latter is called output elasticity in economics. Roughly speaking, it indicates by what fraction of 1% the output of an economy, i.e. the GDP, changes if the production factor changes by 1% while all other factors stay constant. On the average, the cost shares have been about 25% for capital, 70% for labor, and 5% for energy in industrialized economies. Thus, energy plays hardly any role in orthodox theories of production and growth.

However, the cost-share theorem can be disproved by including technological constraints on capital, labor, and energy in the derivation of the (equilibrium) state in which an economy is supposed to operate. This is shown for the state of maximum profit, and for the state of maximum overall welfare as well. Consequently, a new method of computing output from the inputs of capital, labor and energy is needed and developed. It reproduces economic growth in Germany, Japan and the USA in good agreement with the empirical data and yields productive powers that are much larger for energy and much smaller for labor than their cost shares. In fact energy, and its conversion into physical work, accounts for most of the growth that mainstream economics attributes to technological progress and related concepts.

As energy conversion is inevitably coupled to entropy production, the resulting emissions threaten environmental stability and impair economic evolution. In other words, future growth strategies must observe the Second Law of Economics: Energy conversion and entropy production determine the growth of wealth. This complements the First Law of Economics: Wealth is allocated on markets, and the legal framework determines the outcome. The distribution of wealth, the accumulation of debts, discounting of the future, and perspectives on growth are discussed.

Keywords

Gross Domestic Product Capital Stock Entropy Production Cost Share Capacity Utilization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Leontief, W. (Nobel Laureate in Economics): Academic Economics. Science 217, 104–107 (1982)ADSCrossRefGoogle Scholar
  2. 2.
    Gurland, A.R.L.: Wirtschaft und Gesellschaft im Übergang zum Zeitalter der Industrie. In: Mann, G. (ed.) Propyläen Weltgeschichte, Vol. 8, pp. 280–336. Propyläen, Berlin–Frankfurt (1991)Google Scholar
  3. 3.
    Kümmel, R.: Growth Dynamics of the Energy-Dependent Economy. Mathematical Systems in Economics 54, Eichhorn, W., Henn, R. (eds.). Oelgeschlager, Gunn & Hain, Cambridge (1980)Google Scholar
  4. 4.
    Kümmel, R., Ayres, R.U., Lindenberger, D.: Thermodynamic laws, economic methods and the productive power of energy. J. Non-Equilib. Thermodyn. 35, 145–179 (2010); doi:10.15.15/JNETDY.2010.009Google Scholar
  5. 5.
    Samuelson, P.A.: Economics, Tenth Edition, International Student Edition. MacGraw-Hill Kogagusha, Tokyo (1976)Google Scholar
  6. 6.
    Stern Review Report on the Economics of Climate Change, ISBN number: 0-521-70080-9, Cambridge University Press (http://www.cambridge.org/9780521700801) 2007.
  7. 7.
    Stern, D.I.: The Economics of Climate Change. Amer. Econ. Rev. 98(2), 1–37 (2008)CrossRefGoogle Scholar
  8. 8.
    Pack, H.: Endogeneous Growth Theory: Intellectual Appeal and Empirical Shortcomings. J. Econ. Perspect. 8, 55–72 (1994)CrossRefGoogle Scholar
  9. 9.
    Barbier, E.B.: Endogeneous Growth and Natural Resource Scarcity. Environ. Resource Econ. 14, 51–74 (1999)CrossRefGoogle Scholar
  10. 10.
    Welsch, H., Eisenack, K.: Energy Costs, Endogeneous Innovation, and Long-run Growth. Jahr. Nationalökon. Statist. 222/4, 490–499 (2002)Google Scholar
  11. 11.
    Meadows, D.H., Meadows, D.L., Randers, J., Behrens III, W.W.: The Limits to Growth. Universe Books, New York (1972)Google Scholar
  12. 12.
    Laherrère, J. H.: The reliability of oil and gas reserves data. In: Tolba, M.K. (ed.) Our Fragile World (Forerunner to the Encyclopedia of Life Support Systems) pp. 427-451. UNESCO and Eolss Publishers, Oxford, (2001)Google Scholar
  13. 13.
    Strahan, D.: The Last Oil Shock, John Murray, London (2007)Google Scholar
  14. 14.
    Eichhorn, W., Solte, D.: Das Kartenhaus Weltfinanzsystem. Fischer Taschenbuch Verlag, Frankfurt (2009)Google Scholar
  15. 15.
    Kammer, H.-W., Schwabe, K.: Thermodynamik irreversibler Prozesse. Physik-Verlag, Weinheim (1986)Google Scholar
  16. 16.
    Kluge, G., Neugebauer, G.: Grundlagen der Thermodynamik. Spektrum Fachverlag, Heidelberg (1993)Google Scholar
  17. 17.
    Kümmel, R., Schüssler, U.: Heat equivalents of noxious substances: a pollution indicator for environmental accounting. Ecol. Econ. 3, pp. 139–156 (1991).CrossRefGoogle Scholar
  18. 18.
    Deutscher Bundestag: Dritter Bericht der Enquete Kommission Vorsorge zum Schutz der Erdatmosphäre, Drucksache 11/8030. Bonn (1990)Google Scholar
  19. 19.
    von Buttlar, H.: Umweltprobleme. Phys. Blätter 31, 145–155 (1975)Google Scholar
  20. 20.
    Hall, C., Lindenberger, D., Kümmel, R., Kroeger, T., Eichhorn, W.: The need to reintegrate the natural sciences with economics. Bioscience 51, 663–673 (2001)CrossRefGoogle Scholar
  21. 21.
    Tryon, F. G.: An index of consumption of fuels and water power. J. Amer. Statistical Assoc. 22, 271–282 (1927)CrossRefGoogle Scholar
  22. 22.
    Binswanger, H.C., Ledergerber, E.: Bremsung des Energiezuwachses als Mittel der Wachstumskontrolle. In: Wolf, J. (ed.) Wirtschaftspolitik in der Umweltkrise, pp. 103–125. dva, Stuttgart (1974)Google Scholar
  23. 23.
    Georgescu-Roegen, N.: The Entropy Law and the Economic Process. Harvard University Press, Cambridge (1971)Google Scholar
  24. 24.
    Kümmel, R.: The impact of energy on industrial growth. Energy—Intntl. J. 7, 189–203 (1982)Google Scholar
  25. 25.
    Berry, R.S., Salamon, P., Heal, G.: On a relation between thermodynamic and economic optima. Resources Energy 1, 125–137 (1978)CrossRefGoogle Scholar
  26. 26.
    Berry, R.S., Andresen, P.: Thermodynamic constraints in economic analysis. In: Schieve, W.C., Allen, P.M. (eds.) Self-organization and Structures. Application to the physical and economic sciences, Chap. 20. University of Texas Press, Austin (1982)Google Scholar
  27. 27.
    Ayres, R. U., Nair, I.: Thermodynamics and Economics. Phys. Today 37, 62–71 (1984)CrossRefGoogle Scholar
  28. 28.
    Kümmel, R., Strassl, W., Gossner, A., Eichhorn, W.: Technical progress and energy-dependent production functions. J. Econ. (Z. Nationalökon.) 45, 285–311 (1985).Google Scholar
  29. 29.
    Kümmel, R., Lindenberger, D., Eichhorn, W.: Energie, Wirtschaftswachstum und technischer Fortschritt. Phys. Blätter 53, 869–875 (1997)Google Scholar
  30. 30.
    van Gool, W., Bruggink, J.J.C. (eds.): Energy and Time in the Economic and Physical Sciences. North-Holland, Amsterdam (1985)Google Scholar
  31. 31.
    Salamon, P., Komlos, J., Andresen, B., Nulton, J.D.: A geometric view of welfare gains with non–instantaneous adjustment. Math. Soc. Sci., 13/2, 153–163 (1987)Google Scholar
  32. 32.
    Faber, M., Niemes, H., Stephan, G.: Entropy, Environment, and Resources. Springer, Berlin (1987)CrossRefGoogle Scholar
  33. 33.
    Faber, M., Proops, J.: Evolution, Time, Production, and the Environment, 2nd ed. Springer, Berlin (1994)Google Scholar
  34. 34.
    Ayres, R.U.: Information, Entropy, and Progress. AIP Press, New York (1994)Google Scholar
  35. 35.
    Daly, H. E.: On Nicholas Georgescu-Roegen’s contributions to economics: an obituary essay. Ecol. Econ. 13, 149–154 (1995)CrossRefGoogle Scholar
  36. 36.
    Söllner, F.: Thermodynamik und Umweltökonomie. Physica, Heidelberg (1996)CrossRefGoogle Scholar
  37. 37.
    Kümmel, R.: Energy as a factor of production and entropy as a pollution indicator in macroeconomic modelling. Ecol. Econ. 1, 161–180 (1989).CrossRefGoogle Scholar
  38. 38.
    Kümmel, R., Lindenberger, D., Eichhorn, W.: The Productive Power of Energy and Economic Evolution. Indian J. Appl. Econ. 8, 231–262 (2000). (Special Issue Essays in Honor of Professor Paul A. Samuelson.)Google Scholar
  39. 39.
    Tsirlin, A. M.: Extremal principles and the limiting capabilities of open thermodynamic and economic macrosystems. J. Autom. Remote Ctrl. 66, 449–464 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  40. 40.
    Tsirlin, A. M.: Mathematical models and equilibrium in irreversible economics. Mathem. Mod. 21/11, 47-56 (2009)Google Scholar
  41. 41.
    Solow, R.M.: The Economics of Resources and the Resources of Economics. Amer. Econ. Rev. 64, 1–14 (1974).Google Scholar
  42. 42.
    Glaser, P.E.: Solar Power from Satellites, Phys. Today, February 1977, 30–38 (1977)CrossRefGoogle Scholar
  43. 43.
    Lior, N.: Power from Space. Energy Convers. Manage. 42, 1789–1805 (2001), and references therein.Google Scholar
  44. 44.
    National Security Space Office: Space-Based Solar Power as an Opportunity for Strategic Security. Report to the Director, National Security Space Office, Interim Assessment, Release 0.1, 10 October 2007.Google Scholar
  45. 45.
    Hudson, E. H., Jorgenson, D.W.: U.S. energy policy and economic growth, 1975–2000. Bell J. Econ. Manag. Sc. 5, 461–514 (1974)Google Scholar
  46. 46.
    Tintner, G., Deutsch, E., Rieder, R.: A Production Function for Austria Emphasizing Energy. In: Altman, F.L., Kýn, O., Wagner, H.-J. (eds.) On the Measurement of Factor Productivities, pp. 151-164. Vandenhoek & Ruprecht, Göttingen (1974)Google Scholar
  47. 47.
    Griffin, J.M., Gregory, P.R.: An intercountry translog model of energy substitution responses. Amer. Econ. Rev. 66, 845–857 (1976)Google Scholar
  48. 48.
    Berndt, E.R., Jorgenson, D.W.: How energy and its cost enter the productivity equation. IEEE Spectr. 15, 50–52 (1978)Google Scholar
  49. 49.
    Berndt, E.R., Wood, D.O.: Engineering and econometric interpretations of energy–capital complementarity. Amer. Econ. Rev. 69, 342–354 (1979)Google Scholar
  50. 50.
    Jorgenson, D.W.: The role of energy in the U.S. economy. Nat. Tax J. 31, 209–220 (1978)Google Scholar
  51. 51.
    Allen, E.L.: Energy and economic growth in the United States. MIT Press, Cambridge (1979)Google Scholar
  52. 52.
    Jorgenson, D.W.: The role of energy in productivity growth. Amer. Econ. Rev. 74/2, 26-30 (1984)Google Scholar
  53. 53.
    Denison, E.F.: Explanation of declining productivity growth. Surv. Curr. Bus. 59/8, Part II, 1–24 (1979)Google Scholar
  54. 54.
    Kümmel, R.: Energie und Wirtschaftswachstum. Konjunkturpolitik 23, 152–173 (1977)Google Scholar
  55. 55.
    Groscurth, H.-M., Kümmel, R., van Gool, W.: Thermodynamic limits to energy optimization. Energy—Intntl. J. 14, 241–258 (1989)Google Scholar
  56. 56.
    Kunkel, A., Schwab, H., Bruckner, T., Kümmel, R.: Kraft–Wärme–Kopplung und innovative Energiespeicherkonzepte. Brennst.–Wärme–Kraft 48, 54–60 (1996)Google Scholar
  57. 57.
    Lindenberger, D., Bruckner, T., Morrison, R., Groscurth, H.-M., Kümmel, R.: Modernization of local energy systems, Energy—Intntl. J. 29, 245–256 (2004)Google Scholar
  58. 58.
    Deutsche Bundesbank: Makroökonomisches Mehr-Länder-Modell. Frankfurt, 1996.Google Scholar
  59. 59.
    Solow, R.M.: Perspectives on growth theory. J. Econ. Perspect. 8, 45–54 (1994)CrossRefGoogle Scholar
  60. 60.
    Goldman Sachs: The GCC Dream: Between the BRICs and the Developed World. Global Economics Paper 155, April 17, 2007. https://portal.gs.com
  61. 61.
    Nordhaus, W.: A Question of Balance. Weighting the Options on Global Warming Policies. Yale University Press, New Haven & London (2008) (http://nordhaus.econ.yale.edu/~nordhaus/homepage/Balance_2nd_proofs.pdf.)
  62. 62.
    Hoedl, E.: Socio–ecological market economy in Europe. In: Unger, F. (ed.) European Academy of Sciences & Arts, Activities 2009, pp. 82–88. Salzburg 2010Google Scholar
  63. 63.
    Atkinson, A.B., Rainwater, L., Smeeding, T.M.: Income Distribition in OECD Countries—Evidence from the Luxembourg Income Study. OECD, Paris (1995)Google Scholar
  64. 64.
    Samuelson, P.A., Solow, R.M.: A complete capital model involving heterogeneous capital goods. Quart. J. Econ. 70, 537–562 (1956)CrossRefGoogle Scholar
  65. 65.
    Ramsey, F.P.: A Mathematical Theory of Saving. Econ. J. 38(152), 543–559 (1928)CrossRefGoogle Scholar
  66. 66.
    Arrow, K.J.: Some ordinalist-utilitarian notes on Rawl’s “Theory of Justice”. Journal of Philosophy 70(9), 245–263 (1973)CrossRefGoogle Scholar
  67. 67.
    Hellwig, K., Speckbacher, G., Wentges, P.: Utility maximization under capital growth constraints. J. Math. Econ. 33, 1–12 (2000)zbMATHCrossRefGoogle Scholar
  68. 68.
    Press, W.H., Teukolsky, S.A., Vetterlin, W.T., Flannery, B.P.: Numerical Recipes in C. Cambridge University Press, Cambridge (1992)zbMATHGoogle Scholar
  69. 69.
    Lindenberger, D.: Wachstumsdynamik industrieller Volkswirtschaften: Energieabhängige Produktionsfunktionen und ein faktorpreis-gesteuertes Optimierungsmodell. Metropolis, Marburg (2000)Google Scholar
  70. 70.
    Kümmel, R., Henn, J., Lindenberger, D.: Capital, labor, energy and creativity: modeling innovation diffusion. Struct. Change Econ. Dynam. 13, 415–433 (2002)CrossRefGoogle Scholar
  71. 71.
    Schmid, J.: Diploma Thesis, Fakultät für Physik und Astronomie, Universität Würzburg (2002)Google Scholar
  72. 72.
    Grahl, J., Kümmel, R.: Das Loch im Fass. Energiesklaven, Arbeitsplätze und die Milderung des Wachstumszwangs. Wissenschaft & Umwelt Interdisz. 13, 195–212 (2009)Google Scholar
  73. 73.
    Shulman, B.: Working and Poor in the USA. The Nation, February 9, 2004; see also http://www.thenation.com/doc/20040209/shulman
  74. 74.
    Lindenberger, D., Eichhorn, W., Kümmel, R.: Energie, Innovation und Wirtschaftswachstum. Z. Energiewirtschaft 25, 273–282 (2001)Google Scholar
  75. 75.
    Lindenberger, D.: Service production functions. J. Econ. (Z. Nationalökon.), 80, 127–142 (2003)Google Scholar
  76. 76.
    Stresing, R., Lindenberger, D., Kümmel, R.: Cointegration of output, capital, labor, and energy. Eur. Phys. J. B 66, 279–287 (2008); see also http://www.ewi.uni-koeln.de/fileadmin/user/WPs/ewiwp0804.pdf
  77. 77.
    Stresing, R.: Energie und Wirtschaftswachstum: Produktionsfunktionen und Kointegrationsanalysen für Deutschland, Japan und die USA. Diploma Thesis, Fakultät für Physik und Astronomie, Universität Würzburg (2005)Google Scholar
  78. 78.
    Engle, R.F., Granger, C.W.J.: Cointegration and Error Correction: Representation, Estimation, and Testing. Econometrica 55, 251–276 (1987)MathSciNetzbMATHCrossRefGoogle Scholar
  79. 79.
    Dickey, D.A., Fuller, W.A.: Distribution of the Estimators for Autoregressive Time Series with a Unit Root. J. Amer. Statistical Assoc. 74, 427–431 (1979)MathSciNetzbMATHGoogle Scholar
  80. 80.
    Dickey, D.A., Fuller, W.A.: Likelihood Ratio Statistics for Autoregressive Time Series with a Unit Root. Econometrica 49, 1057–1071 (1981)MathSciNetzbMATHCrossRefGoogle Scholar
  81. 81.
    Hamilton, J.D.: Oil and the Macroeconomy since World War II. J. Polit. Economy 91, No.2, 224–248 (1993)Google Scholar
  82. 82.
    Hamilton, J.D.: Time Series Analysis. Princeton University Press, Princeton (1994)zbMATHGoogle Scholar
  83. 83.
    MacKinnon, J.G.: Critical Values for Cointegration Tests. In: Engle, R.F., Granger, C.W. (eds.) Long-run Economic Relationships: Readings in Cointegration Oxford (1991)Google Scholar
  84. 84.
    Ayres, R.U., Ayres, L.W., Warr, B.: Exergy, power and work in the US economy, 1900- 1998 Energy—Intntl. J. 28, 219–273 (2003)Google Scholar
  85. 85.
    Ayres, R.U., Warr, B.: Accounting for growth: the role of physical work. Struct. Change Econ. Dynam. 16, 181–209 (2005)CrossRefGoogle Scholar
  86. 86.
    Ayres, R.U., Warr, B.: The Economic Growth Engine. Edgar Elgar, Cheltenham, 2009Google Scholar
  87. 87.
    Ayres, R.U., Warr, B.: Accounting for growth: the role of physical work. In: Max-Planck-Institute for Research into Economic Systems (ed.) Proceedings of the workshop Reappraising Production Theory. Jena (2001)Google Scholar
  88. 88.
    Fisher, F.M.: Aggregation. Aggregate Production Functions and Related Topics. MIT Press, Cambridge, (1993)Google Scholar
  89. 89.
    Kurz H.D., Salvadory, N.: Theory of Production. Cambridge University Press, Cambridge (1995)CrossRefGoogle Scholar
  90. 90.
    Kurz H.D.: Wicksell and the problem of the “missing equation” Hist. Polit. Economy 32, 765–788 (2000)Google Scholar
  91. 91.
    Pasinetti, L.: Critique of the neoclassical theory of growth and distribution. Moneta Credito (Banca Nazionale del Lavoro Quarterly Review) 210, 187–232 (2000)Google Scholar
  92. 92.
    Felipe, J., Fisher F.M.: Aggregation in production functions: what applied economists should know. Metroeconomica 54, 208–262 (2003)zbMATHCrossRefGoogle Scholar
  93. 93.
    Silverberg, G.: Private communication (2007)Google Scholar
  94. 94.
    Robinson, J.: The production function and the theory of capital. Rev. Econ. Stud. 21, 81–106 (1953-54)Google Scholar
  95. 95.
    Robinson, J.: The measure of capital: the end of the controversy. Econ. J. 81, 597–602 (1971)CrossRefGoogle Scholar
  96. 96.
    Usher, D.: Introduction. In: Usher D. (ed.) The Measurement of Capital, pp. 1–21. University of Chicago Press, Chicago(1980)Google Scholar
  97. 97.
    Witt, U.: “Production” in Nature and Production in the Economy—Second Thoughts About Some Basic Economic Concepts. Struct. Change Econ. Dynam. 16(2), 165–179 (2005)CrossRefGoogle Scholar
  98. 98.
    Paech, N.: Wachstum “light”—Qualitatives Wachstum ist eine Utopie. Wissenschaft & Umwelt 13, 84–91 (2009)Google Scholar
  99. 99.
    Wikipedia, The Free Encyclopedia: “Invisible Hand”.Google Scholar
  100. 100.
    Bertola, G.: Factor Shares and Savings in Endogenous Growth. Amer. Econ. Rev. 83(5), 1184–1198 (1993)Google Scholar
  101. 101.
    OECD Berlin Centre, OECD-Publikationen, Neuerscheinungen Januar 2010, ISBN 978-92-64-06883-4Google Scholar
  102. 102.
    Shah, A.: Poverty Facts and Stats. Global Issues http://www.globalissues.org/article/26/poverty-facts-and-stats
  103. 103.
  104. 104.
    Kunz, H.: A primer on current economic conditions. Institute for Integrated Economic Research, Meilen (2009); http://www.iier.ch
  105. 105.
    Solte, D.: Weltfinanzsystem am Limit—Einblicke in den “Heiligen Gral” der Globalisierung. Terra Media Verlag, Berlin (2007)Google Scholar
  106. 106.
    Hall, C., Powers, R., Schoenberg, W.: Peak oil, EROI, investments and the economy in an uncertain future. In: Pimentel, D. (ed.) Biofuels, Solar and Wind as Renewable Energy Systems, pp. 113–136. Elsevier, London (2008)Google Scholar
  107. 107.
    Hohmeyer, O., Ottinger, R.L. (eds.): External Environmental Costs of Electric Power, Springer, Berlin (1991)Google Scholar
  108. 108.
    The Siemens cost estimate was presented during a hearing in the German Federal Ministry of Research and Technology in 1990.Google Scholar
  109. 109.
    Kümmel, R.: Ökonomische Bewertungen der Klimawandel-Folgen. In: Keilhacker, M. (ed.) Weltklima und zukünftige Energieversorgung, pp. 73–89. Deutsche Physikalische Gesellschaft, Bad Honnef (2007)Google Scholar
  110. 110.
    Daly, H.: When smart people make dumb mistakes. Ecol. Econ. 34, 1–3 (2000).Google Scholar
  111. 111.
    Nordhaus, W.: Science, Sept. 1991, 1206 (1991)Google Scholar
  112. 112.
    Beckermann, W.: Small is Stupid. Duckworth, London (1997)Google Scholar
  113. 113.
    T.C. Schelling, T.C.: The Cost of Combating Global Warming. Foreign Affairs, November/December 1997, 9 (1997)Google Scholar
  114. 114.
    Knizia, K.: Kreativität, Energie und Entropie. Econ, Düsseldorf (1992)Google Scholar
  115. 115.
    Callen, H.B., Welton, Th.A.: Irreversiblity and Generalized Noise. Phys. Rev. 83, 34–39 (1951)MathSciNetzbMATHGoogle Scholar
  116. 116.
    Reif, F.: Fundamentals of Statistical and Thermal Physics, Chap. 15, pp. 594–600. McGraw-Hill, New York (1965)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Institute for Theoretical Physics and AstrophysicsUniversity of WürzburgWürzburgGermany

Personalised recommendations