• Reiner KümmelEmail author
Part of the The Frontiers Collection book series (FRONTCOLL)


Energy is the capacity to cause changes in the world. It is stored in matter and force fields. The Sun produces energy by nuclear fusion. Solar irradiation, and reradiation and capture of the infrared by the greenhouse gases in the atmosphere, determine the climate on Earth and the environment for life. The combustion of coal, oil, and gas in heat engines, and non-fossil energy utilization, provide every citizen of the industrialized countries with energy services that are quantitatively equivalent to those of more than 40 hard-working men. They offer freedom from toil, comfort, mobility, information, and power. Transistors, running on electricity, work as powerful assistants to the human brain. A given energy quantity consists of a valuable part, called exergy, which can be converted into any form of physical work, and a useless part called anergy. Fossil and nuclear fuels, and solar radiation as well, are practically 100% exergy, and anergy is mostly heat at the temperature of the environment. All production processes in nature and industry decrease exergy and increase anergy. Energy consumption in this sense depletes the reserves of the easily accessible fossil fuels at a rate that, for oil, may soon culminate in peak Ooil. The potential of energy conservation and of non-fossil energy sources are assessed.


Steam Turbine Heat Engine Energy Service Steam Engine Payback Time 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Ostwald, W.: Die Energie, Verlag von Johann Ambrosius Barth, Leipzig (1908)Google Scholar
  2. 2.
    Lindner, A.: Grundkurs Theoretische Physik, p. 235. Teubner, Stuttgart (1994)Google Scholar
  3. 3.
    Fetter, A.L., Walecka, J.D.: Quantum Theory of Many-Particle Systems. McGraw-Hill, New York (1971)Google Scholar
  4. 4.
    Dreizler, R. M., Gross, E. K. U.: Density Functional Theory. Springer, Berlin (1990)zbMATHCrossRefGoogle Scholar
  5. 5.
    Baehr, H. D.: Thermodynamik, 5. Ed. Springer, Berlin, Heidelberg (1984)Google Scholar
  6. 6.
    Fricke, J., Schüssler, U., Kümmel, R.: CO2-Entsorgung. Phys. Unserer Zeit, 20, No. 2, 56–61 (1989)Google Scholar
  7. 7.
    Ullmanns Encyclopädie der Technischen Chemie, 14. Verlag Chemie, Weinheim (1977)Google Scholar
  8. 8.
    Giovanelli, R.G.: Secrets of the Sun. Cambridge University Press, Cambridge (1984)Google Scholar
  9. 9.
    Berthomieu, G., Cribier, M. (Eds.): Inside the Sun, Kluwer, Dordrecht (1990)Google Scholar
  10. 10.
    Dearborn, D. S. P.: Standard Solar Models. In: [11], pp. 159–174Google Scholar
  11. 11.
    Sonett, C.P., Giampapa, M.S., Mathews, M.S.: The Sun in Time. The University of Arizona Press, Tucson (1991)Google Scholar
  12. 12.
    Stix, M.: The Sun. Springer, Heidelberg (1989)CrossRefGoogle Scholar
  13. 13.
    German Bundestag (ed.): Protecting the Earth ’s Atmosphere, Bonn (1989); Fig. 8, p.359Google Scholar
  14. 14.
    Eddy, J. A.: Variability of the present and ancient Sun: A test of solar uniformitarianism. In: [15]Google Scholar
  15. 15.
    Stephenson, F.R., Wolfendale, A.W. (Eds.): Secular Solar and Geomagnetic Variations in the Last 10 000 Years, Kluwer, Dordrecht (1988)Google Scholar
  16. 16.
    Labitzke, K.: On the interannual variability of the middle stratosphere during northern winter. J. Meteor. Soc. Japan 60, 124–139 (1990)Google Scholar
  17. 17.
    Wigley, T.M.L.: The climate of the past 10 000 years and the role of the Sun. In: [15], pp. 209–223Google Scholar
  18. 18.
    Schönwiese, C.-D., Walter, A., Brinckmann, S.: Statistical assessments of anthropogenic and natural global climate forcing. An update. Meteorol. Z. 19 (1), 003–010 (2010)CrossRefGoogle Scholar
  19. 19.
    Sybesma, C.: Biophysics. Kluwer, Dordrecht (1989)CrossRefGoogle Scholar
  20. 20.
    Sieferle, R. P.: Das vorindustrielle Solarenergiesystem. In: Brauch, H. G. (ed.) Energiepolitik, pp. 27–46. Springer, Berlin (1997)CrossRefGoogle Scholar
  21. 21.
    Wikipedia, the free encyclopediaGoogle Scholar
  22. 22.
    Heinloth, K.: Energie und Umwelt. B.G. Teubner, Stuttgart (1993)Google Scholar
  23. 23.
    Institut der deutschen Wirtschaft Köln: Deutschland in Zahlen 2006: Wirtschaftszahlen, Internationale Vergleiche, Primärenergieverbrauch, 12.22, online service.Google Scholar
  24. 24.
    Institut der deutschen Wirtschaft Köln: Deutschland in Zahlen 2006: Wirtschaftszahlen, Internationale Vergleiche, Bevölkerung, 12.1, online service.Google Scholar
  25. 25.
    Heinloth, K.: Klimaverträglichkeit von Arten der Energiebereitstellung für Nahrung, Wärme, Strom, Treibstoffe. In: Nordmeier, V., Grötzebauch, H. (eds.) Beiträge zur MNU-Tagung, Regensburg 2009, MNU/M\({}_{-}0{9}_{-}02\)/M\({}_{-}0{9}_{-}02\).pdf. Lehmanns Media, Berlin (2009)Google Scholar
  26. 26.
    Kroy, W., Ludwig Bölkow Stiftung: Können Erneuerbare Energieformen unseren Energiebedarf in der Zukunft sichern? Talk presented on October 10, 2008, at the founding Symposium of the “Denkwerk Zukunft” in the Margarethenhof/Tegernsee.Google Scholar
  27. 27.
    Bundesministerium für Wirtschaft und Technologie, Energiedaten 2005: Tables 40, 41, 42, online service.Google Scholar
  28. 28.
    Bundesanstalt für Geowissenschaften und Rohstoffe, 2006, quoted by: “Welt der Physik, Uranreserven”, edited by Deutsche Physikalische Gesellschaft and Bundesministerium für Bildung und Forschung,
  29. 29.
    Blok, K.: Introduction to Energy Analysis. Techne Press, Amsterdam (2006).Google Scholar
  30. 30.
    Groscurth, H.-M., Kümmel, R., van Gool, W.: Thermodynamic Limits to Energy Optimization. Energy—Intntl. J. 14, 241-258 (1989).Google Scholar
  31. 31.
    Groscurth, H.-M., Kümmel, R.: The Cost of Energy Conservation: A Thermoeconomic Analysis of National Energy Systems. Energy—Intntl. J. 14, 685–696 (1989). Groscurth, H.-M.: Rationelle Energieverwendung durch Wärmerückgewinnung. Physica-Verlag, Heidelberg (1991)Google Scholar
  32. 32.
    King Hubbert, M.: Nuclear Energy and the Fossil Fuels. American Petroleum Institute, 1956. One can read the entire paper at
  33. 33.
    Strahan, D.: The Last Oil Shock, John Murray, London (2007)Google Scholar
  34. 34.
    Erbrich, P.: Ernährung und Energiegewinnung—Ergebnisse aus dem zweiten Bericht des Club of Rome. Orientierung 39, 79 (1975)Google Scholar
  35. 35.
    Energy Information Administration: International Energy Annual 2006, posted on December 8, 2008.Google Scholar
  36. 36.
    Heinloth, K.: Die Energiefrage. Vieweg, Braunschweig (1997)Google Scholar
  37. 37.
    Bundesverband Windenergie, quoted by “Welt der Physik”, edited by Deutsche Physikalische Gesellschaft and Bundesministerium für Bildung und Forschung,
  38. 38.
    “Welt der Physik”, see [37]Google Scholar
  39. 39.
  40. 40.
    Wiese, A., Kaltschmitt, M.: Stand und Perspektiven der Windkraftnutzung in Deutschland. In: Brauch, H.G. (ed.) Energiepolitik, pp. 87–100. Springer, Berlin (1997)CrossRefGoogle Scholar
  41. 41.
    Lindenberger, D., Bruckner, T., Groscurth, H.-M, Kümmel, R.: Optimization of solar district heating systems: seasonal storage, heat pumps, and cogeneration. Energy—Intntl. J. 25, 591–608 (2000).Google Scholar
  42. 42.
    ZAE Bayern (Bavarian Center for Applied Energy Research): Annual Report 2009, p. 34. ZAE, Würzburg, (2010)Google Scholar
  43. 43.
    Luther, J.: Solar Energy Conversion—Solar Electricity Generation, Photovoltaic Energy Conversion. Fraunhofer Institut für Solare Energiesysteme, Freiburg;
  44. 44.
    Forschungsverbund Erneuerbare Energien (FVEE) (Renewable Energy Research Association): Beitrag des FVEE zum 6. Energieforschungsprogramm der Bundesregierung. October 2010 (
  45. 45.
    German Solar Industry Association, as quoted by L. Wissing in the “National Survey Report of PV Power Applications in Germany 2006”, Forschungszentrum JülichGoogle Scholar
  46. 46.
    Institut für Elektrische Energietechnik, Fachgebiet Erneuerbare Energien, Technische Universität Berlin: Energetische Amortisation und Erntefaktoren regenerativer Energien, and references therein;
  47. 47.
    Hall, C., Powers, R., Schoenberg, W.: Peak oil, EROI, investments and the economy in an uncertain future. In: Pimentel, D. (ed.) Biofuels, Solar and Wind as Renewable Energy Systems, pp. 113-136. Elsevier, London (2008)Google Scholar
  48. 48.
    Gagnon, N., Hall, C., Brinker, L: A Preliminary Investigation of Energy Return on Energy Investment for Global Oil and Gas Production. Energies 2, 490–503 (2009); doi:10.3390/en20300490Google Scholar
  49. 49.
    Murphy, D., Hall, C.: Year in review—EROI or energy return on (energy) invested. Ann. N.Y. Acad. Sci. 1185 102–118 (2010)Google Scholar
  50. 50.
    The LTI-Research Group (Ed.): Long-Term Integration of Renewable Energy Sources into the European Energy System. Research Department Environmental and Resource Economics, Logistics, ZEW.—Physica-Verlag, Heidelberg (1998)Google Scholar
  51. 51.
    Kenney, W.F.: Energy Conservation in the Process Industries. Academic Press, Orlando, (1984)Google Scholar
  52. 52.
    Bruckner, T., Groscurth, H.-M., Kümmel, R.: Competition and synergy between energy technologies in municipal energy systems. Energy—Intntl. J. 22, 1005–10014 (1997).Google Scholar
  53. 53.
    International Energy Agency (IEA): World Energy Outlook. Paris (1993)Google Scholar
  54. 54.
    Kümmel, R., Schüssler, U.: Heat equivalents of noxious substances: a pollution indicator for environmental accounting, Ecol. Econ. 3, 139–156 (1991)CrossRefGoogle Scholar
  55. 55.
    World Nuclear Association, July 2008;
  56. 56.
    Dietrich, G., Neumann, W., Roehl, N.: Decommissioning of the thorium high temperature reactor (THTR 300). In: Technical committee meeting on technologies for gas cooled reactor decommissioning, fuel storage, and waste disposal. Juelich (Germany) 8-10 Sep 1997, pp. 9–15. International Atomic Energy Agency, Vienna. IAE-TECDOC-1043Google Scholar
  57. 57.
    Häfele, W., Holdren, J.P., Kessler, G., Kulcinski, G.L.: Fusion and Fast Breeder Reactors. International Institute of Applied System Analysis (IIASA), Laxenburg (1977)Google Scholar
  58. 58.
    Deutsche Physikalische Gesellschaft (German Physical Society): Climate Protection and Energy Supply in Germany 1990–2020. Bad Honnef (2005) (
  59. 59.
    Glaser, P.E.: The Future of Power from the Sun. In: IECEC 1968 Record, IEEE Publication 68C21-Energy, pp. 98–103, (1968); Power from the Sun; its future. Science 162, 857–861 (1968)Google Scholar
  60. 60.
    Glaser, P.E.: Method and Apparatus for Converting Solar Radiation to Electrical Power, US Patent 3,781,647 December 23, 1973.Google Scholar
  61. 61.
    Glaser, P.E.: Perspectives of Satellite Solar Power. Journal of Energy, March/April 1977.Google Scholar
  62. 62.
    Glaser, P.E.: Solar Power from Satellites. Phys. Today, February 1977, pp. 30–38Google Scholar
  63. 63.
    Boeing Aerospace Co.: System’s Definition—Space Based Power Conversion Systems. NASA, MSFC, Contract NAS8-31628, Fourth Performance Briefing, August 11, 1976Google Scholar
  64. 64.
    US Department of Energy and the National Aeronautics and Space Administration: Satellite Power System. Reference System Report, October 1978, DOE/ER-0023. National Technical Information Service, US Department of Commerce, Springfield (1979)Google Scholar
  65. 65.
    Koomanoff, F.A.: Satellite power system concept development and evaluation program. Space Solar Power Review 2, 163–168 (1980)Google Scholar
  66. 66.
    Lior, N.: Power from Space. Energy Convers. Manage. 42, 1769–1805 (2001)CrossRefGoogle Scholar
  67. 67.
    O’Neill, G.K.: The Low (Profile) Road to Space Manufacturing. Astronautics and Aeronautics 16, Special Section, pp. 18–32 (1978)Google Scholar
  68. 68.
    O’Neill, G.K.: The Colonization of Space. Phys. Today, September 1974, pp. 32-40Google Scholar
  69. 69.
    O’Neill, G.K.: The High Frontier—Human Colonies in Space. William Morrow & Co., New York (1977)Google Scholar
  70. 70.
    Summerer, L., Ongaro, F.: Solar Power from Space—Validations of Options for Europe.
  71. 71.
    National Space Security Office: Space-Based Solar Power As an Opportunity for Strategic Security. Phase 0 Architecture Feasibility Study, 10 October 2007Google Scholar
  72. 72.
    Fricke, J., Borst, W.L.: Energie, 2nd Edn. Oldenbourg, Munich (1984)Google Scholar
  73. 73.
    Karlsson, S.: The Exergy of Incoherent Electromagnetic Radiation. Phys. Scr. 26, 329 (1982).MathSciNetADSCrossRefGoogle Scholar
  74. 74.
    van Gool, W.: The Value of Energy Carriers. Energy—Intntl. J. 12, 509 (1987)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Institute for Theoretical Physics and AstrophysicsUniversity of WürzburgWürzburgGermany

Personalised recommendations