Advertisement

Photonic Simulation and Design Space

  • Keren BergmanEmail author
  • Luca P. Carloni
  • Aleksandr Biberman
  • Johnnie Chan
  • Gilbert Hendry
Chapter
Part of the Integrated Circuits and Systems book series (ICIR, volume 68)

Abstract

As discussed in the previous chapter, the progress in silicon photonics research has enabled the physical demonstration of all the devices that are necessary to build extremely high-bandwidth density and energy-efficient links for on-chip and off-chip communications. Photonic network design, however, requires a major paradigm shift from traditional network design due to the fundamental differences in how electronics and photonics operate. Consequently, new modeling and analysis methods must be employed to realize a chip-scale photonic interconnection network. This chapter describes a methodology and a supporting computer-aided design (CAD) environment to model the basic photonic devices, to combine them to realize photonic network architectures, and to analyze the physical-layer and system-level performance properties of these networks.

Keywords

Power Dissipation Insertion Loss Ring Resonator Photonic Device Wavelength Channel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    J. Chan, G. Hendry, K. Bergman, and L. Carloni, “Physical-layer modeling and system-level design of chip-scale photonic interconnection networks,” Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on, vol. 30, no. 10, pp. 1507–1520, Oct. 2011.Google Scholar
  2. 2.
    A. Varga, “OMNeT\({++}\) discrete event simulation system.” [Online]. Available: http://www.omnetpp.org.
  3. 3.
    H.-S. Wang, X. Zhu, L.-S. Peh, and S. Malik, “Orion: a power-performance simulator for interconnection networks,” in Proceedings of the 35th Annual ACM/IEEE International Symposium on Microarchitecture (MICRO), Nov. 2002, pp. 294–305.Google Scholar
  4. 4.
    D. Vantrease, R. Schreiber, M. Monchiero, M. McLaren, N. P. Jouppi, M. Fiorentino, A. Davis, N. Binkert, R. G. Beausoleil, and J. H. Ahn, “Corona: System implications of emerging nanophotonic technology,” Proceedings of the 35th Annual International Symposium on Computer Architecture (ISCA), pp. 153–164, Jun. 2008.Google Scholar
  5. 5.
    A. Shacham, K. Bergman, and L. P. Carloni, “Photonic networks-on-chip for future generations of chip multiprocessors,” IEEE Transactions on Computers, vol. 57, no. 9, pp. 1246–1260, 2008.Google Scholar
  6. 6.
    G. Hendry, S. Kamil, A. Biberman, J. Chan, B. Lee, M. Mohiyuddin, A. Jain, K. Bergman, L. Carloni, J. Kubiatowicz, L. Oliker, and J. Shalf, “Analysis of photonic networks for a chip multiprocessor using scientific applications,” in Proceedings of the 2009 3rd ACM/IEEE International Symposium on Networks-on-Chip (NOCS), May 2009, pp. 104–113.Google Scholar
  7. 7.
    P. Dong, S. F. Preble, and M. Lipson, “All-optical compact silicon comb switch,” Opt. Express, vol. 15, no. 15, pp. 9600–9605, Jul. 2007.Google Scholar
  8. 8.
    J. Chan, G. Hendry, A. Biberman, and K. Bergman, “Architectural exploration of chip-scale photonic interconnection network designs using physical-layer analysis,” J. Lightwave Technol., vol. 28, no. 9, pp. 1305–1315, May 2010.Google Scholar
  9. 9.
    W. Bogaerts, P. Dumon, D. V. Thourhout, and R. Baets, “Low-loss, low-cross-talk crossings for silicon-on-insulator nanophotonic waveguides,” OSA Optics Letters, vol. 32, no. 19, pp. 2801–2803, 2007.Google Scholar
  10. 10.
    A. Sakai, G. Hara, and T. Baba, “Large effective index and low bend loss in SOI optical waveguides,” in Lasers and Electro-Optics, 2001. CLEO/Pacific Rim 2001. The 4th Pacific Rim Conference on, vol. 1, 2001, pp. I-4–I-5.Google Scholar
  11. 11.
    Corning Incorporated, “Corning SMF-28e\(+\) optical fiber product information,” Jul. 2011. [Online]. Available: http://www.corning.com/WorkArea/showcontent.aspx?id=41261.
  12. 12.
    B. Little, J. Foresi, G. Steinmeyer, E. Thoen, S. Chu, H. Haus, E. Ippen, L. Kimerling, and W. Greene, “Ultra-compact Si-SiO\(_{2}\) microring resonator optical channel dropping filters,” IEEE Photonics Technology Letters, vol. 10, no. 4, pp. 549–551, Apr. 1998.Google Scholar
  13. 13.
    B. G. Lee et al., “All-optical comb switch for multiwavelength message routing in silicon photonic networks,” IEEE Photonics Technology Letters, vol. 20, no. 10, pp. 767–769, May 2008.Google Scholar
  14. 14.
    Y. Vlasov, W. M. J. Green, and F. Xia, “High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks,” Nature Photonics, vol. 2, pp. 242–246, Apr. 2008.Google Scholar
  15. 15.
    Q. Xu, S. Manipatruni, B. Schmidt, J. Shakya, and M. Lipson, “12.5 Gbit/s carrier-injection-based silicon micro-ring silicon modulators,” OSA Optics Express, vol. 15, no. 2, pp. 430–436, 2007.Google Scholar
  16. 16.
    S. Assefa, F. Xia, S. W. Bedell, Y. Zhang, T. Topuria, P. M. Rice, and Y. A. Vlasov, “CMOS-integrated 40 GHz germanium waveguide photodetector for on-chip optical interconnects,” in Proceedings of Optical Fiber Communication Conference (OFC), 2009, p. OMR4.Google Scholar
  17. 17.
    L. Vivien, J. Osmond, J.-M. Fédéli, D. Marris-Morini, P. Crozat, J.-F. Damlencourt, E. Cassan, Y. Lecunff, and S. Laval, “42 GHz P.I.N germanium photodetector integrated in a silicon-on-insulator waveguide,” OSA Optics Express, vol. 17, no. 8, pp. 6252–6257, 2009.Google Scholar
  18. 18.
    H.-W. Chen, Y.-H. Kuo, and J. E. Bowers, “High speed hybrid silicon evanescent Mach-Zehnder modulator and switch,” OSA Optics Express, vol. 16, no. 25, pp. 20 571–20 576, 2008.Google Scholar
  19. 19.
    T. Gensty, W. Elsäßer, and C. Mann, “Intensity noise properties of quantum cascade lasers,” OSA Optics Express, vol. 13, no. 6, pp. 2032–2039, 2005.Google Scholar
  20. 20.
    C. Miller, Fiber Optic Test and Measurement. Prentice Hall, 1998.Google Scholar
  21. 21.
    D. Wang, B. Ganesh, N. Tuaycharoen, K. Baynes, A. Jaleel, and B. Jacob, “DRAMsim: a memory system simulator,” SIGARCH Comput. Archit. News, vol. 33, no. 4, pp. 100–107, Nov. 2005.Google Scholar
  22. 22.
    W. Huang, S. Ghosh, S. Velusamy, K. Sankaranarayanan, K. Skadron, and M. Stan, “Hotspot: a compact thermal modeling methodology for early-stage VLSI design,” Very Large Scale Integration (VLSI) Systems, IEEE Transactions on, vol. 14, no. 5, pp. 501–513, May 2006.Google Scholar
  23. 23.
    K. Skadron, M. R. Stan, K. Sankaranarayanan, W. Huang, S. Velusamy, and D. Tarjan, “Temperature-aware microarchitecture: Modeling and implementation,” ACM Trans. Archit. Code Optim., vol. 1, no. 1, pp. 94–125, Mar. 2004.Google Scholar
  24. 24.
    D. Ding and D. Z. Pan, “OIL: a nano-photonics optical interconnect library for a new photonic networks-on-chip architecture,” in Proceedings of the 11th International Workshop on System Level Interconnect Prediction (SLIP), Jul. 2009, pp. 11–18.Google Scholar
  25. 25.
    J. Minz, S. Thyagaraja, and S. K. Lim, “Optical routing for 3D system-on-package,” in Design, Automation Test in Europe Conference Exhibition (DATE), vol. 1, Mar. 2006, pp. 1–2.Google Scholar
  26. 26.
    G. Hendry, J. Chan, L. P. Carloni, and K. Bergman, “VANDAL: A tool for the design specification of nanophotonic networks,” in Design, Automation Test in Europe Conference Exhibition (DATE), Mar. 2011.Google Scholar
  27. 27.
    I. O’Connor, F. Tissafi-Drissi, F. Gaffiot, J. Dambre, M. De Wilde, J. Van Campenhout, D. Van Thourhout, J. Van Campenhout, and D. Stroobandt, “Systematic simulation-based predictive synthesis of integrated optical interconnect,” IEEE Trans. Very Large Scale Integr. Syst., vol. 15, pp. 927–940, Aug. 2007.Google Scholar
  28. 28.
    M. De Wilde, O. Rits, W. Meeus, H. Lambrecht, and J. Van Campenhout, “Integration of modeling tools for parallel optical interconnects in a standard EDA design environment,” in Design, Automation Test in Europe Conference Exhibition (DATE), Feb. 2004.Google Scholar
  29. 29.
    P. K. Pepeljugoski and D. M. Kuchta, “Design of optical communications data links,” IBM Journal of Research and Development, vol. 47, no. 2.3, pp. 223–237, Mar. 2003.Google Scholar
  30. 30.
    M. Briere, E. Drouard, F. Mieyeville, D. Navarro, I. O’Connor, and F. Gaffiot, “Heterogeneous modelling of an optical network-on-chip with SystemC,” in Proceedings of the 16th IEEE International Workshop on Rapid System Prototyping (RSP), Jun. 2005, pp. 10–16.Google Scholar
  31. 31.
    A. Kodi and A. Louri, “Optisim: A system simulation methodology for optically interconnected HPC systems,” IEEE Micro, vol. 28, no. 5, pp. 22–36, Sep.-Oct. 2008.Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Keren Bergman
    • 1
    Email author
  • Luca P. Carloni
    • 1
  • Aleksandr Biberman
    • 1
  • Johnnie Chan
    • 1
  • Gilbert Hendry
    • 1
  1. 1.Department of Electrical EngineeringColumbia UniversityNew YorkUSA

Personalised recommendations