Advertisement

Silicon Photonics

  • Keren BergmanEmail author
  • Luca P. Carloni
  • Aleksandr Biberman
  • Johnnie Chan
  • Gilbert Hendry
Chapter
Part of the Integrated Circuits and Systems book series (ICIR, volume 68)

Abstract

Systems harnessing silicon photonic technology have the potential to vastly improve the performance of interconnects and computing systems. This chapter provides insight into this emerging technology, and summarizes several critical empirical results. Key conclusions that can be drawn from these demonstrations are highlighted, followed by discussions on relevant performance metrics and their corresponding challenges.

Keywords

Crystalline Silicon Extinction Ratio Polycrystalline Silicon Wavelength Channel Power Penalty 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” Quantum Electronics, IEEE Journal of, vol. 23, no. 1, pp. 123–129, 1987.Google Scholar
  2. 2.
    S. Manipatruni, Q. Xu, B. Schmidt, J. Shakya, and M. Lipson, “High speed carrier injection 18 Gb/s silicon micro-ring electro-optic modulator,” in Lasers and Electro-Optics Society, 2007. LEOS 2007. The 20th Annual Meeting of the IEEE, 2007, pp. 537–538.Google Scholar
  3. 3.
    H. L. R. Lira, S. Manipatruni, and M. Lipson, “Broadband hitless silicon electro-optic switch for on-chip optical networks,” Opt. Express, vol. 17, no. 25, pp. 22 271–22 280, 2009.Google Scholar
  4. 4.
    K. K. Lee, D. R. Lim, L. C. Kimerling, J. Shin, and F. Cerrina, “Fabrication of ultralow-loss Si/SiO2 waveguides by roughness reduction,” Opt. Lett., vol. 26, no. 23, pp. 1888–1890, Dec. 2001.Google Scholar
  5. 5.
    F. Y. Gardes, G. T. Reed, A. P. Knights, G. Mashanovich, P. E. Jessop, L. Rowe, S. McFaul, D. Bruce, and N. G. Tarr, “Sub-micron optical waveguides for silicon photonics formed via the local oxidation of silicon (LOCOS),” Proc. SPIE, pp. 68 980R–68 980R–4, 2008.Google Scholar
  6. 6.
    P. Dong, W. Qian, S. Liao, H. Liang, C.-C. Kung, N.-N. Feng, R. Shafiiha, J. Fong, D. Feng, A. V. Krishnamoorthy, and M. Asghari, “Low loss shallow-ridge silicon waveguides,” Opt. Express, vol. 18, no. 14, pp. 14 474–14 479, Jul. 2010.Google Scholar
  7. 7.
    W. Bogaerts and S. Selvaraja, “Compact single-mode silicon hybrid rib/strip waveguide with adiabatic bends,” Photonics Journal, IEEE, vol. 3, no. 3, pp. 422–432, Jun. 2011.Google Scholar
  8. 8.
    M. Borselli, T. Johnson, and O. Painter, “Beyond the rayleigh scattering limit in high-Q silicon microdisks: theory and experiment,” Opt. Express, vol. 13, no. 5, pp. 1515–1530, Mar. 2005.Google Scholar
  9. 9.
    G. Li, J. Yao, H. Thacker, A. Mekis, X. Zheng, I. Shubin, Y. Luo, J. hyoung Lee, K. Raj, J. E. Cunningham, and A. V. Krishnamoorthy, “Ultralow-loss, high-density SOI optical waveguide routing for macrochip interconnects,” Opt. Express, vol. 20, no. 11, pp. 12 035–12 039, May 2012.Google Scholar
  10. 10.
    A. Biberman, M. J. Shaw, E. Timurdogan, J. B. Wright, and M. R. Watts, “Ultralow-loss silicon ring resonators,” Opt. Lett., vol. 37, no. 20, pp. 4236–4238, Oct. 2012.Google Scholar
  11. 11.
    A. Biberman, M. Shaw, E. Timurdogan, J. Wright, and M. Watts, “Ultralow-loss silicon ring resonators,” in Group IV Photonics (GFP), 2012 IEEE 9th International Conference on, Aug. 2012, pp. 39–41.Google Scholar
  12. 12.
    Q. Fang, J. F. Song, S. H. Tao, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Low loss (6.45 dB/cm) sub-micron polycrystalline silicon waveguide integrated with efficient SiON waveguide coupler,” Opt. Express, vol. 16, no. 9, pp. 6425–6432, 2008.Google Scholar
  13. 13.
    K. Preston, S. Manipatruni, A. Gondarenko, C. B. Poitras, and M. Lipson, “Deposited silicon high-speed integrated electro-optic modulator,” Opt. Express, vol. 17, no. 7, pp. 5118–5124, 2009.Google Scholar
  14. 14.
    K. Preston, Y. H. D. Lee, M. Zhang, and M. Lipson, “Waveguide-integrated telecom-wavelength photodiode in deposited silicon,” Opt. Lett., vol. 36, no. 1, pp. 52–54, Jan. 2011.Google Scholar
  15. 15.
    J. F. Bauters, M. J. R. Heck, D. D. John, J. S. Barton, C. M. Bruinink, A. Leinse, R. G. Heideman, D. J. Blumenthal, and J. E. Bowers, “Planar waveguides with less than 0.1 dB/m propagation loss fabricated with wafer bonding,” Opt. Express, vol. 19, no. 24, pp. 24 090–24 101, Nov. 2011.Google Scholar
  16. 16.
    M. J. Shaw, J. Guo, G. A. Vawter, S. Habermehl, and C. T. Sullivan, “Fabrication techniques for low-loss silicon nitride waveguides,” in Micromachining Technology for Micro-Optics and Nano-Optics III, E. G. Johnson, G. P. Nordin, and T. J. Suleski, Eds., vol. 5720, 2005, pp. 109–118.Google Scholar
  17. 17.
    A. Gondarenko, J. S. Levy, and M. Lipson, “High confinement micron-scale silicon nitride high Q ring resonator,” Opt. Express, vol. 17, no. 14, pp. 11 366–11 370, 2009.Google Scholar
  18. 18.
    S. Zhu, G. Q. Lo, and D. L. Kwong, “Low-loss amorphous silicon wire waveguide for integrated photonics: effect of fabrication process and the thermal stability,” Opt. Express, vol. 18, no. 24, pp. 25 283–25 291, Nov. 2010.Google Scholar
  19. 19.
    J. Michel, J. Liu, and L. C. Kimerling, “High-performance Ge-on-Si photodetectors,” Nature Photonics, vol. 4, pp. 527–534, Aug. 2010.Google Scholar
  20. 20.
    L. Colace, G. Altieri, and G. Assanto, “Waveguide photodetectors for the near-infrared in polycrystalline germanium on silicon,” Photonics Technology Letters, IEEE, vol. 18, no. 9, pp. 1094–1096, May 2006.Google Scholar
  21. 21.
    H. Lee, T. Chen, J. Li, O. Painter, and K. J. Vahala, “Ultra-low-loss optical delay line on a silicon chip,” Nature Communications, vol. 3, pp. 1–7, May 2012.Google Scholar
  22. 22.
    H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nature Photonics, vol. 6, pp. 369–373, May 2012.Google Scholar
  23. 23.
    R. Adar, M. Serbin, and V. Mizrahi, “Less than 1 dB per meter propagation loss of silica waveguides measured using a ring resonator,” Lightwave Technology, Journal of, vol. 12, no. 8, pp. 1369–1372, Aug. 1994.Google Scholar
  24. 24.
    A. Biberman, K. Preston, G. Hendry, N. Sherwood-Droz, J. Chan, J. S. Levy, M. Lipson, and K. Bergman, “Photonic network-on-chip architectures using multi-layer deposited silicon materials for high-performance chip multiprocessors,” J. Emerg. Technol. Comput. Syst., vol. 7, Jun. 2011.Google Scholar
  25. 25.
    M. Lipson, “Guiding, modulating, and emitting light on silicon-challenges and opportunities,” Lightwave Technology, Journal of, vol. 23, no. 12, pp. 4222–4238, Dec. 2005.Google Scholar
  26. 26.
    B. Lee, X. Chen, A. Biberman, X. Liu, I.-W. Hsieh, C.-Y. Chou, J. Dadap, F. Xia, W. Green, L. Sekaric, Y. Vlasov, R. Osgood, and K. Bergman, “Ultrahigh-bandwidth silicon photonic nanowire waveguides for on-chip networks,” Photonics Technology Letters, IEEE, vol. 20, no. 6, pp. 398–400, Mar. 2008.Google Scholar
  27. 27.
    C. Manolatou, S. G. Johnson, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “High-density integrated optics,” J. Lightwave Technol., vol. 17, no. 9, p. 1682, Sep. 1999.Google Scholar
  28. 28.
    W. Bogaerts, P. Dumon, D. V. Thourhout, and R. Baets, “Low-loss, low-cross-talk crossings for silicon-on-insulator nanophotonic waveguides,” Opt. Lett., vol. 32, no. 19, pp. 2801–2803, 2007.Google Scholar
  29. 29.
    F. Xu and A. W. Poon, “Silicon cross-connect filters using microring resonator coupled multimode-interference-based waveguide crossings,” Opt. Express, vol. 16, no. 12, pp. 8649–8657, 2008.Google Scholar
  30. 30.
    M. Popovic, E. Ippen, and F. Kartner, “Low-loss bloch waves in open structures and highly compact, efficient Si waveguide-crossing arrays,” in Lasers and Electro-Optics Society, 2007. LEOS 2007. The 20th Annual Meeting of the IEEE, Oct. 2007, pp. 56–57.Google Scholar
  31. 31.
    J. Chan, G. Hendry, A. Biberman, and K. Bergman, “Architectural exploration of chip-scale photonic interconnection network designs using physical-layer analysis,” Lightwave Technology, Journal of, vol. 28, no. 9, pp. 1305–1315, May 2010.Google Scholar
  32. 32.
    I. Young, E. Mohammed, J. Liao, A. Kern, S. Palermo, B. Block, M. Reshotko, and P. Chang, “Optical I/O technology for tera-scale computing,” Solid-State Circuits, IEEE Journal of, vol. 45, no. 1, pp. 235–248, Jan. 2010.Google Scholar
  33. 33.
    N. Ophir, A. Biberman, J. S. Levy, K. Padmaraju, K. J. Luke, M. Lipson, and K. Bergman, “Demonstration of 1.28-Tb/s transmission in next-generation nanowires for photonic networks-on-chip,” in IEEE Photonics Society, 2010 23rd Annual Meeting of the, Nov. 2010, pp. 560–561.Google Scholar
  34. 34.
    K. Ikeda, R. E. Saperstein, N. Alic, and Y. Fainman, “Thermal and Kerr nonlinear properties of plasma-deposited silicon nitride/silicon dioxide waveguides,” Opt. Express, vol. 16, no. 17, pp. 12 987–12 994, Aug. 2008.Google Scholar
  35. 35.
    A. Biberman and K. Bergman, “Optical interconnection networks for high-performance computing systems,” Reports on Progress in Physics, vol. 75, no. 4, 2012.Google Scholar
  36. 36.
    A. Krishnamoorthy, R. Ho, X. Zheng, H. Schwetman, J. Lexau, P. Koka, G. Li, I. Shubin, and J. Cunningham, “Computer systems based on silicon photonic interconnects,” Proceedings of the IEEE, vol. 97, no. 7, pp. 1337–1361, Jul. 2009.Google Scholar
  37. 37.
    C. Batten, A. Joshi, J. Orcutt, A. Khilo, B. Moss, C. Holzwarth, M. Popovic, H. Li, H. Smith, J. Hoyt, F. Kartner, R. Ram, V. Stojanovic, and K. Asanovic, “Building many-core processor-to-DRAM networks with monolithic CMOS silicon photonics,” Micro, IEEE, vol. 29, no. 4, pp. 8–21, Jul.-Aug. 2009.Google Scholar
  38. 38.
    R. Beausoleil, J. Ahn, N. Binkert, A. Davis, D. Fattal, M. Fiorentino, N. P. Jouppi, M. McLaren, C. M. Santori, R. S. Schreiber, S. M. Spillane, D. Vantrease, and Q. Xu, “A nanophotonic interconnect for high-performance many-core computation,” in Integrated Photonics and Nanophotonics Research and Applications, 2008, p. ITuD2.Google Scholar
  39. 39.
    A. Shacham, K. Bergman, and L. P. Carloni, “On the design of a photonic network-on-chip,” in NOCS07: Proceedings of the First International Symposium on Networks-on-Chip, 2007, pp. 53–64.Google Scholar
  40. 40.
    N. Kirman, M. Kirman, R. K. Dokania, J. F. Martinez, A. B. Apsel, M. A. Watkins, and D. H. Albonesi, “Leveraging optical technology in future bus-based chip multiprocessors,” in MICRO 39: Proceedings of the 39th Annual IEEE/ACM International Symposium on Microarchitecture, 2006, pp. 492–503.Google Scholar
  41. 41.
    R. G. Beausoleil, “Large-scale integrated photonics for high-performance interconnects,” J. Emerg. Technol. Comput. Syst., vol. 7, no. 2, pp. 6:1–6:54, Jul. 2011.Google Scholar
  42. 42.
    Q. Xu, D. Fattal, and R. G. Beausoleil, “Silicon microring resonators with 1.5-\(\upmu \)m radius,” Opt. Express, vol. 16, no. 6, pp. 4309–4315, 2008.Google Scholar
  43. 43.
    S. Manipatruni, K. Preston, L. Chen, M. Lipson, “Ultra-low voltage, ultra-small mode volume silicon microring modulator,” in Opt. Express, vol. 18, 2010, pp. 18 235–18 242.Google Scholar
  44. 44.
    W. A. Zortman, M. R. Watts, D. C. Trotter, R. W. Young, and A. L. Lentine, “Low-power high-speed silicon microdisk modulators,” in Conference on Lasers and Electro-Optics, 2010, p. CThJ4.Google Scholar
  45. 45.
    Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature, vol. 435, pp. 325–327, 05 2005.Google Scholar
  46. 46.
    X. Xiao, H. Xu, X. Li, Y. Hu, K. Xiong, Z. Li, T. Chu, Y. Yu, and J. Yu, “25 Gbit/s silicon microring modulator based on misalignment-tolerant interleaved PN junctions,” Opt. Express, vol. 20, no. 3, pp. 2507–2515, Jan. 2012.Google Scholar
  47. 47.
    J. C. Rosenberg, W. M. J. Green, S. Assefa, D. M. Gill, T. Barwicz, M. Yang, S. M. Shank, and Y. A. Vlasov, “A 25 Gbps silicon microring modulator based on an interleaved junction,” Opt. Express, vol. 20, no. 24, pp. 26 411–26 423, Nov. 2012.Google Scholar
  48. 48.
    G. Li, X. Zheng, J. Yao, H. Thacker, I. Shubin, Y. Luo, K. Raj, J. E. Cunningham, and A. V. Krishnamoorthy, “25 Gb/s 1 V-driving CMOS ring modulator with integrated thermal tuning,” Opt. Express, vol. 19, no. 21, pp. 20 435–20 443, Oct. 2011.Google Scholar
  49. 49.
    G. Li, X. Zheng, H. Thacker, J. Yao, Y. Luo, I. Shubin, K. Raj, J. Cunningham, and A. Krishnamoorthy, “40 Gb/s thermally tunable CMOS ring modulator,” in Group IV Photonics (GFP), 2012 IEEE 9th International Conference on, Aug. 2012, pp. 1–3.Google Scholar
  50. 50.
    Y. Hu, X. Xiao, H. Xu, X. Li, K. Xiong, Z. Li, T. Chu, Y. Yu, and J. Yu, “High-speed silicon modulator based on cascaded microring resonators,” Opt. Express, vol. 20, no. 14, pp. 15 079–15 085, Jul. 2012.Google Scholar
  51. 51.
    X. Xiao, X. Li, H. Xu, Y. Hu, K. Xiong, Z. Li, T. Chu, J. Yu, and Y. Yu, “44-Gb/s silicon microring modulators based on zigzag PN junctions,” Photonics Technology Letters, IEEE, vol. 24, no. 19, pp. 1712–1714, Oct. 2012.Google Scholar
  52. 52.
    M. R. Watts, W. A. Zortman, D. C. Trotter, R. W. Young, and A. L. Lentine, “Vertical junction silicon microdisk modulators and switches,” Opt. Express, vol. 19, no. 22, pp. 21 989–22 003, Oct. 2011.Google Scholar
  53. 53.
    A. Biberman, E. Timurdogan, W. A. Zortman, D. C. Trotter, and M. R. Watts, “Adiabatic microring modulators,” Opt. Express, vol. 20, no. 28, pp. 29 223–29 236, Dec. 2012.Google Scholar
  54. 54.
    E. Timurdogan, M. Moresco, A. Biberman, J. Sun, W. Zortman, D. Trotter, and M. Watts, “Adiabatic resonant microring (ARM) modulator,” in Optical Interconnects Conference, 2012 IEEE, May 2012, pp. 48–49.Google Scholar
  55. 55.
    M. R. Watts, “Adiabatic microring resonators,” Opt. Lett., vol. 35, no. 19, pp. 3231–3233, Oct. 2010.Google Scholar
  56. 56.
    M. Watts, W. Zortman, D. Trotter, G. Nielson, D. Luck, and R. Young, “Adiabatic resonant microrings (ARMs) with directly integrated thermal microphotonics,” in Lasers and Electro-Optics, 2009 and 2009 Conference on Quantum electronics and Laser Science Conference. CLEO/QELS 2009. Conference on, Jun. 2009, pp. 1–2.Google Scholar
  57. 57.
    A. Biberman, S. Manipatruni, N. Ophir, L. Chen, M. Lipson, and K. Bergman, “First demonstration of long-haul transmission using silicon microring modulators,” Opt. Express, vol. 18, no. 15, pp. 15 544–15 552, Jul. 2010.Google Scholar
  58. 58.
    A. Biberman, N. Ophir, K. Bergman, S. Manipatruni, L. Chen, and M. Lipson, “First experimental bit-error-rate validation of 12.5-Gb/s silicon modulator enabling photonic networks-on-chip,” in Optical Fiber Communication Conference, 2010, p. OMI1.Google Scholar
  59. 59.
    A. Biberman, N. Ophir, K. Bergman, S. Manipatruni, L. Chen, and M. Lipson, “First demonstration of 80-km long-haul transmission of 12.5-Gb/s data using silicon microring resonator electro-optic modulator,” in Optical Fiber Communication Conference, 2010, p. JWA28.Google Scholar
  60. 60.
    S. Manipatruni, L. Chen, and M. Lipson, “50 Gbit/s wavelength division multiplexing using silicon microring modulators,” in Group IV Photonics, 2009. GFP ’09. 6th IEEE International Conference on, 2009, pp. 244–246.Google Scholar
  61. 61.
    Q. Xu, B. Schmidt, J. Shakya, and M. Lipson, “Cascaded silicon micro-ring modulators for WDM optical interconnection,” Opt. Express, vol. 14, no. 20, pp. 9431–9435, Oct. 2006.Google Scholar
  62. 62.
    B. Lee, B. Small, Q. Xu, M. Lipson, and K. Bergman, “Characterization of a \(4\times 4\) Gb/s parallel electronic bus to WDM optical link silicon photonic translator,” Photonics Technology Letters, IEEE, vol. 19, no. 7, pp. 456–458, Apr. 2007.Google Scholar
  63. 63.
    K. Padmaraju, N. Ophir, A. Biberman, L. Chen, E. Swan, J. Chan, M. Lipson, and K. Bergman, “Intermodulation crosstalk from silicon microring modulators in wavelength-parallel photonic networks-on-chip,” in IEEE Photonics Society, 2010 23rd Annual Meeting of the, Nov. 2010, pp. 562–563.Google Scholar
  64. 64.
    A. Yariv, “Universal relations for coupling of optical power between microresonators and dielectric waveguides,” Electronics Letters, vol. 36, no. 4, pp. 321–322, Feb. 2000.Google Scholar
  65. 65.
    J. T. Robinson, K. Preston, O. Painter, and M. Lipson, “First-principle derivation of gain in high-index-contrast waveguides,” Opt. Express, vol. 16, no. 21, pp. 16 659–16 669, Oct. 2008.Google Scholar
  66. 66.
    M. R. Watts, D. C. Trotter, and R. W. Young, “Maximally confined high-speed second-order silicon microdisk switches,” in National Fiber Optic Engineers Conference, 2008, p. PDP14.Google Scholar
  67. 67.
    A. Biberman, H. L. Lira, K. Padmaraju, N. Ophir, M. Lipson, and K. Bergman, “Broadband CMOS-compatible silicon photonic electro-optic switch for photonic networks-on-chip,” in Conference on Lasers and Electro-Optics, 2010, p. CPDA11.Google Scholar
  68. 68.
    Y. Vlasov, W. M. J. Green, and F. Xia, “High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks,” Nature Photonics, vol. 2, pp. 242–246, Apr. 2008.Google Scholar
  69. 69.
    A. Biberman, H. Lira, K. Padmaraju, N. Ophir, J. Chan, M. Lipson, and K. Bergman, “Broadband silicon photonic electrooptic switch for photonic interconnection networks,” Photonics Technology Letters, IEEE, vol. 23, no. 8, pp. 504–506, Apr. 2011.Google Scholar
  70. 70.
    B. Lee, A. Biberman, P. Dong, M. Lipson, and K. Bergman, “All-optical comb switch for multiwavelength message routing in silicon photonic networks,” Photonics Technology Letters, IEEE, vol. 20, no. 10, pp. 767–769, May 2008.Google Scholar
  71. 71.
    B. Lee, A. Biberman, N. Sherwood-Droz, C. Poitras, M. Lipson, and K. Bergman, “High-speed \(2\times 2\) switch for multi-wavelength message routing in on-chip silicon photonic networks,” in Optical Communication, 2008. ECOC 2008. 34th European Conference on, Sep. 2008, pp. 1–2.Google Scholar
  72. 72.
    A. Biberman, B. G. Lee, N. Sherwood-Droz, M. Lipson, and K. Bergman, “Broadband operation of nanophotonic router for silicon photonic networks-on-chip,” Photonics Technology Letters, IEEE, vol. 22, no. 12, pp. 926–928, Jun. 2010.Google Scholar
  73. 73.
    A. Biberman, P. Dong, B. Lee, J. Foster, M. Lipson, and K. Bergman, “Silicon microring resonator-based broadband comb switch for wavelength-parallel message routing,” in Lasers and Electro-Optics Society, 2007. LEOS 2007. The 20th Annual Meeting of the IEEE, Oct. 2007, pp. 474–475.Google Scholar
  74. 74.
    A. Biberman, B. G. Lee, K. Bergman, P. Dong, and M. Lipson, “Demonstration of all-optical multi-wavelength message routing for silicon photonic networks,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, 2008, p. OTuF6.Google Scholar
  75. 75.
    P. Dong, S. F. Preble, and M. Lipson, “All-optical compact silicon comb switch,” Opt. Express, vol. 15, no. 15, pp. 9600–9605, 2007.Google Scholar
  76. 76.
    A. Biberman, B. Lee, P. Dong, M. Lipson, and K. Bergman, “250 Gb/s multi-wavelength operation of microring resonator-based broadband comb switch for silicon photonic networks-on-chip,” in Optical Communication, 2008. ECOC 2008. 34th European Conference on, Sep. 2008, pp. 1–2.Google Scholar
  77. 77.
    B. G. Lee, A. Biberman, N. Sherwood-Droz, C. B. Poitras, M. Lipson, and K. Bergman, “High-speed \(2\times 2\) switch for multiwavelength silicon-photonic networks-on-chip,” J. Lightwave Technol., vol. 27, no. 14, pp. 2900–2907, Jul. 2009.Google Scholar
  78. 78.
    H. Wang, M. Petracca, A. Biberman, B. G. Lee, L. P. Carloni, and K. Bergman, “Nanophotonic optical interconnection network architecture for on-chip and off-chip communications,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, 2008, p. JThA92.Google Scholar
  79. 79.
    A. Shacham, B. Lee, A. Biberman, K. Bergman, and L. Carloni, “Photonic NoC for DMA communications in chip multiprocessors,” in High-Performance Interconnects, 2007. HOTI 2007. 15th Annual IEEE Symposium on, Aug. 2007, pp. 29–38.Google Scholar
  80. 80.
    N. Sherwood-Droz, H. Wang, L. Chen, B. G. Lee, A. Biberman, K. Bergman, and M. Lipson, “Optical \(4\times 4\) hitless silicon router for optical networks-on-chip (NoC),” Opt. Express, vol. 16, no. 20, pp. 15 915–15 922, Sep. 2008.Google Scholar
  81. 81.
    B. G. Lee, A. Biberman, K. Bergman, N. Sherwood-Droz, and M. Lipson, “Multi-wavelength message routing in a non-blocking four-port bidirectional switch fabric for silicon photonic networks-on-chip,” in Optical Fiber Communication Conference, 2009, p. OMJ4.Google Scholar
  82. 82.
    A. Biberman, N. Sherwood-Droz, B. Lee, M. Lipson, and K. Bergman, “Thermally active \(4\times 4\) non-blocking switch for networks-on-chip,” in IEEE Lasers and Electro-Optics Society, 2008. LEOS 2008. 21st Annual Meeting of the, Nov. 2008, pp. 370–371.Google Scholar
  83. 83.
    Q. Xu, S. Manipatruni, B. Schmidt, J. Shakya, and M. Lipson, “12.5 Gbit/s carrier-injection-based silicon micro-ring silicon modulators,” Opt. Express, vol. 15, no. 2, pp. 430–436, Jan. 2007.Google Scholar
  84. 84.
    J. Chan, A. Biberman, B. G. Lee, and K. Bergman, “Insertion loss analysis in a photonic interconnection network for on-chip and off-chip communications,” in IEEE Lasers and Electro-Optics Society (LEOS), Nov. 2008.Google Scholar
  85. 85.
    L. Vivien, J. Osmond, J.-M. Fédéli, D. Marris-Morini, P. Crozat, J.-F. Damlencourt, E. Cassan, Y. Lecunff, and S. Laval, “42 GHz P.I.N germanium photodetector integrated in a silicon-on-insulator waveguide,” Opt. Express, vol. 17, no. 8, pp. 6252–6257, 2009.Google Scholar
  86. 86.
    S. Assefa, F. Xia, S. W. Bedell, Y. Zhang, T. Topuria, P. M. Rice, and Y. A. Vlasov, “CMOS-integrated high-speed MSM germanium waveguide photodetector,” Opt. Express, vol. 18, no. 5, pp. 4986–4999, 2010.Google Scholar
  87. 87.
    L. Chen and M. Lipson, “Ultra-low capacitance and high speed germanium photodetectors on silicon,” Opt. Express, vol. 17, no. 10, pp. 7901–7906, 2009.Google Scholar
  88. 88.
    T. Yin, R. Cohen, M. M. Morse, G. Sarid, Y. Chetrit, D. Rubin, and M. J. Paniccia, “31 GHz Ge n-i-p waveguide photodetectors on silicon-on-insulator substrate,” Opt. Express, vol. 15, no. 21, pp. 13 965–13 971, 2007.Google Scholar
  89. 89.
    J. D. B. Bradley, P. E. Jessop, and A. P. Knights, “Silicon waveguide-integrated optical power monitor with enhanced sensitivity at 1550 nm,” Applied Physics Letters, vol. 86, no. 24, pp. 241 103–241 103–3, Jun. 2005.Google Scholar
  90. 90.
    M. W. Geis, S. J. Spector, M. E. Grein, J. U. Yoon, D. M. Lennon, and T. M. Lyszczarz, “Silicon waveguide infrared photodiodes with \({>}35\) GHz bandwidth and phototransistors with 50 AW\(^{-1}\) response,” Opt. Express, vol. 17, no. 7, pp. 5193–5204, 2009.Google Scholar
  91. 91.
    D. Liang and J. E. Bowers, “Recent progress in lasers on silicon,” Nature Photonics, vol. 4, pp. 511–517, Aug. 2010.Google Scholar
  92. 92.
    J. Liu, X. Sun, R. Camacho-Aguilera, L. C. Kimerling, and J. Michel, “Ge-on-Si laser operating at room temperature,” Opt. Lett., vol. 35, no. 5, pp. 679–681, Mar. 2010.Google Scholar
  93. 93.
    R. E. Camacho-Aguilera, Y. Cai, N. Patel, J. T. Bessette, M. Romagnoli, L. C. Kimerling, and J. Michel, “An electrically pumped germanium laser,” Opt. Express, vol. 20, no. 10, pp. 11 316–11 320, May 2012.Google Scholar
  94. 94.
    J. Van Campenhout, L. Liu, P. Romeo, D. Van Thourhout, C. Seassal, P. Regreny, L. Di Cioccio, J.-M. Fedeli, and R. Baets, “A compact SOI-integrated multiwavelength laser source based on cascaded InP microdisks,” Photonics Technology Letters, IEEE, vol. 20, no. 16, pp. 1345–1347, Aug. 2008.Google Scholar
  95. 95.
    O. Jambois, F. Gourbilleau, A. J. Kenyon, J. Montserrat, R. Rizk, and B. Garrido, “Towards population inversion of electrically pumped Er ions sensitized by Si nanoclusters,” Opt. Express, vol. 18, no. 3, pp. 2230–2235, Feb. 2010.Google Scholar
  96. 96.
    S. Yerci, R. Li, and L. D. Negro, “Electroluminescence from Er-doped Si-rich silicon nitride light emitting diodes,” Applied Physics Letters, vol. 97, no. 8, p. 081109, 2010.Google Scholar
  97. 97.
    D. Livshits, D. Yin, A. Gubenko, I. Krestnikov, S. Mikhrin, A. Kovsh, and G. Wojcik, “Cost-effective WDM optical interconnects enabled by quantum dot comb lasers,” in Optoelectronic Interconnects and Component Integration IX, A. L. Glebov and R. T. Chen, Eds., vol. 7607, 2010, p. 76070W.Google Scholar
  98. 98.
    A. Gubenko, I. Krestnikov, D. Livshtis, S. Mikhrin, A. Kovsh, L. West, C. Bornholdt, N. Grote, and A. Zhukov, “Error-free 10 Gbit/s transmission using individual Fabry-Perot modes of low-noise quantum-dot laser,” Electronics Letters, vol. 43, no. 25, pp. 1430–1431, 6 2007.Google Scholar
  99. 99.
    J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nature Photonics, vol. 4, pp. 37–40, Jan. 2010.Google Scholar
  100. 100.
    T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 \(\mu \)m square Si wire waveguides to singlemode fibres,” Electronics Letters, vol. 38, no. 25, pp. 1669–1670, Dec. 2002.Google Scholar
  101. 101.
    V. R. Almeida, R. R. Panepucci, and M. Lipson, “Nanotaper for compact mode conversion,” Opt. Lett., vol. 28, no. 15, pp. 1302–1304, Aug. 2003.Google Scholar
  102. 102.
    S. McNab, N. Moll, and Y. Vlasov, “Ultra-low loss photonic integrated circuit with membrane-type photonic crystal waveguides,” Opt. Express, vol. 11, no. 22, pp. 2927–2939, Nov. 2003.Google Scholar
  103. 103.
    F. E. Doany, B. G. Lee, S. Assefa, W. M. J. Green, M. Yang, C. L. Schow, C. V. Jahnes, S. Zhang, J. Singer, V. I. Kopp, J. A. Kash, and Y. A. Vlasov, “Multichannel high-bandwidth coupling of ultradense silicon photonic waveguide array to standard-pitch fiber array,” J. Lightwave Technol., vol. 29, no. 4, pp. 475–482, Feb. 2011.Google Scholar
  104. 104.
    R. Emmons and D. Hall, “Buried-oxide silicon-on-insulator structures. II. Waveguide grating couplers,” Quantum Electronics, IEEE Journal of, vol. 28, no. 1, pp. 164–175, Jan. 1992.Google Scholar
  105. 105.
    D. Taillaert, H. Chong, P. Borel, L. Frandsen, R. D. L. Rue, and R. Baets, “A compact two-dimensional grating coupler used as a polarization splitter,” Photonics Technology Letters, IEEE, vol. 15, no. 9, pp. 1249–1251, Sep. 2003.Google Scholar
  106. 106.
    C. Gunn, “CMOS photonics for high-speed interconnects,” Micro, IEEE, vol. 26, no. 2, pp. 58–66, Mar.-Apr. 2006.Google Scholar
  107. 107.
    L. Chen, C. Doerr, Y.-K. Chen, and T.-Y. Liow, “Low-loss and broadband cantilever couplers between standard cleaved fibers and high-index-contrast Si\(_{3}\)N\(_{4}\) or Si waveguides,” Photonics Technology Letters, IEEE, vol. 22, pp. 1744–1746, Dec. 2010.Google Scholar
  108. 108.
    J. Galan, P. Sanchis, J. Marti, S. Marx, H. Schroder, B. Mukhopadhyay, T. Tekin, S. Selvaraja, W. Bogaerts, P. Dumon, and L. Zimmermann, “CMOS compatible silicon etched V-grooves integrated with a SOI fiber coupling technique for enhancing fiber-to-chip alignment,” in Group IV Photonics, 2009. GFP ’09. 6th IEEE International Conference on, Sep. 2009, pp. 148–150.Google Scholar
  109. 109.
    N. Lindenmann, I. Kaiser, G. Balthasar, R. Bonk, D. Hillerkuss, W. Freude, J. Leuthold, and C. Koos, “Photonic waveguide bonds - a novel concept for chip-to-chip interconnects,” in Optical Fiber Communication Conference, 2011, p. PDPC1.Google Scholar
  110. 110.
    T. Tekin, H. Schroder, L. Zimmermann, P. Dumon, and W. Bogaerts, “Fibre-array optical interconnection for silicon photonics,” in Optical Communication, 2008. ECOC 2008. 34th European Conference on, Sep. 2008, pp. 1–2.Google Scholar
  111. 111.
    L. Zimmermann, G. Preve, T. Tekin, T. Rosin, and K. Landles, “Packaging and assembly for integrated photonics - a review of the ePIXpack photonics packaging platform,” Selected Topics in Quantum Electronics, IEEE Journal of, vol. 17, no. 3, pp. 645–651, May-Jun. 2011.Google Scholar
  112. 112.
    L. Chen, K. Preston, S. Manipatruni, and M. Lipson, “Integrated ghz silicon photonic interconnect with micrometer-scale modulators and detectors,” Opt. Express, vol. 17, no. 17, pp. 15 248–15 256, Aug. 2009.Google Scholar
  113. 113.
    N. Ophir, K. Padmaraju, A. Biberman, L. Chen, K. Preston, M. Lipson, and K. Bergman, “First demonstration of error-free operation of a full silicon on-chip photonic link,” in Optical Fiber Communication Conference, 2011, p. OWZ3.Google Scholar
  114. 114.
    A. Biberman, “Silicon photonic revolution through advanced integration,” Future Fab International, pp. 25–28, Jul. 2012.Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Keren Bergman
    • 1
    Email author
  • Luca P. Carloni
    • 1
  • Aleksandr Biberman
    • 1
  • Johnnie Chan
    • 1
  • Gilbert Hendry
    • 1
  1. 1.Department of Electrical EngineeringColumbia UniversityNew YorkUSA

Personalised recommendations