Skip to main content

Ensemble Learning by Negative Correlation Learning

  • Chapter
  • First Online:
Ensemble Machine Learning

Abstract

This chapter investigates a specific ensemble learning approach by negative correlation learning (NCL) [21, 22, 23]. NCL is an ensemble learning algorithm which considers the cooperation and interaction among the ensemble members. NCL introduces a correlation penalty term into the cost function of each individual learner so that each learner minimizes its mean-square-error (MSE) error together with the correlation with other ensemble members.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    μi, i = 1, 2, …M, is the inverse variance of the Gaussian distribution of weights for network i.

  2. 2.

    Since we optimize αi for each individual networks in the ensemble, in this figure we only show the mean αi value.

  3. 3.

    To generate an initial RBF network population: Generate an initial population of M RBF Networks, the number of hidden nodes K for each network is specified randomly restricted by the maximal number of hidden nodes. The centers μk are initialized with randomly selected data points from the training set and the width σk are determined as the Euclidian distance between μk and the closest μj(j≠k, j ∈ { 1, …, K}).

  4. 4.

    Choose parents based on roulette wheel selection algorithm and perform crossover. Then perform a few number of updates for weights, centers, and widths. Compare the children with parents and keep the better ones.

  5. 5.

    The raw fitness values depend on their ranked layers (fronts) in the population. If they are in the same layer (front), e.g., they are both nondominant solutions, the one in the less-crowded area will receive greater fitness according to the fitness sharing algorithm.

  6. 6.

    Negative correlation was used to indicate the correlation between on individual’s error with the error of the rest of the ensemble. By minimizing the correlation term, i.e., \(-{\sum \nolimits }_{n=1}^{N}{({f}_{i}({\mathbf{x}}_{n}) - {f}_{\mathrm{ens}}({\mathbf{x}}_{n}))}^{2}\), the individual in the population will be more diverse, i.e., the term \({\sum \nolimits }_{n=1}^{N}{({f}_{i}({\mathbf{x}}_{n}) - {f}_{\mathrm{ens}}({\mathbf{x}}_{n}))}^{2}\) increases. Therefore, the average training error term \({\sum \nolimits }_{n=1}^{N}{({f}_{i}({\mathbf{x}}_{n}) - {y}_{n})}^{2}\) will increase.

References

  1. C. M. Bishop. Neural Networks for Pattern Recognition. Oxford University Press, USA, 1996.

    MATH  Google Scholar 

  2. G. Brown, J. Wyatt, R. Harris, and X. Yao. Diversity creation methods: A survey and categorisation. Journal of Information Fusion, 6(1):5–20, 2005.

    Article  Google Scholar 

  3. G. Brown, J. Wyatt, and P. Ti\(\mathrm{\check{n}}\)o. Managing diversity in regression ensembles. Journal of Machine Learning Research, 6:1621–1650, 2005.

    Google Scholar 

  4. A. Chandra and X. Yao. Ensemble learning using multi-objective evolutionary algorithms. Journal of Mathematical Modelling and Algorithms, 5(4):417–445, 2006.

    Article  MathSciNet  MATH  Google Scholar 

  5. A. Chandra and X. Yao. Ensemble learning using multi-objective evolutionary algorithms. Journal of Mathematical Modelling and Algorithms, 5(4):417–445, 2006.

    Article  MathSciNet  MATH  Google Scholar 

  6. H. Chen, P. Ti\(\mathrm{\check{n}}\)o, and X. Yao. Predictive ensemble pruning by expectation propagation. IEEE Transactions on Knowledge and Data Engineering, 21(7):999–1013, 2009.

    Google Scholar 

  7. H. Chen and X. Yao. Evolutionary random neural ensemble based on negative correlation learning. In Proceedings of IEEE Congress on Evolutionary Computation (CEC’07), pp. 1468–1474, 2007.

    Google Scholar 

  8. H. Chen and X. Yao. Regularized negative correlation learning for neural network ensembles. IEEE Transactions on Neural Networks, 20(12):1962–1979, 2009.

    Article  Google Scholar 

  9. H. Chen and X. Yao. Multiobjective regularized negative correlation learning for neural network ensembles. IEEE Transactions on Knowledge and Data Engineering, 22(12): 1738–1751, 2010.

    Article  Google Scholar 

  10. H. H. Dam, H. A. Abbass, C. Lokan, and X. Yao. Neural-based learning classifier systems. IEEE Transactions on Knowledge and Data Engineering, 20(1):26–39, 2008.

    Article  MATH  Google Scholar 

  11. P. Darwen and X. Yao. Every niching method has its niche: fitness sharing and implicit sharing compared. In Proceedings of Parallel Problem Solving from Nature (PPSN) IV, volume 1141, pp. 398–407, Berlin, Germany, 1996.

    Google Scholar 

  12. S. Geman, E. Bienenstock, and R. Doursat. Neural networks and the bias/variance dilemma. Neural Computation, 4(1):1–58, 1992.

    Article  Google Scholar 

  13. T. Van Gestel, J. A. K. Suykens, G. Lanckriet, A. Lambrechts, B. De Moor, and J. Vandewalle. Bayesian framework for least-squares support vector machine classifiers, gaussian processes, and kernel fisher discriminant analysis. Neural Computation, 14(5):1115–1147, 2002.

    Article  MATH  Google Scholar 

  14. T. K. Ho. The random subspace method for constructing decision forests. IEEE Transaction on Pattern Analysis and Machine Intelligence, 20(8):832–844, 1998.

    Article  Google Scholar 

  15. M. M. Islam, X. Yao, and K. Murase. A constructive algorithm for training cooperative neural network ensembles. IEEE Transaction on Neural Networks, 14(4):820–834, 2003.

    Article  Google Scholar 

  16. Y. Jin, T. Okabe, and B. Sendhoff. Neural network regularization and ensembling using multi-objective evolutionary algorithms. In Proceedings of IEEE Congress on Evolutionary Computation (CEC’04), pages 1–8, 2004.

    Google Scholar 

  17. A. Krogh and J. A. Hertz. A simple weight decay can improve generalization. In Advances in Neural Information Processing Systems, volume 4, pp. 950–957, 1992.

    Google Scholar 

  18. A. Krogh and J. A. Hertz. A simple weight decay can improve generalization. Advances in Neural Information Processing Systems, pp. 950–950, 1993.

    Google Scholar 

  19. A. Krogh and J. Vedelsby. Neural network ensembles, cross validation, and active learning. In Advances in Neural Information Processing Systems 7, pp. 231–238, Denver, Colorado, USA, 1995.

    Google Scholar 

  20. Y. Liu and X. Yao. Negatively correlated neural networks can produce best ensembles. In Australian Journal of Intelligent Information Processing Systems 4(3/4), pp. 176–185, 1997.

    Google Scholar 

  21. Y. Liu and X. Yao. Ensemble learning via negative correlation. Neural Networks, 12(10): 1399–1404, 1999.

    Article  Google Scholar 

  22. Y. Liu and X. Yao. Simultaneous training of negatively correlated neural networks in an ensemble. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 29(6):716–725, 1999.

    Article  Google Scholar 

  23. Y. Liu, X. Yao, and T. Higuchi. Evolutionary ensembles with negative correlation learning. IEEE Transaction on Evolutionary Computation, 4(4):380–387, 2000.

    Article  Google Scholar 

  24. D. J. C. MacKay. Bayesian interpolation. Neural Computation, 4(3):415–447, 1992.

    Article  MATH  Google Scholar 

  25. R. McKay and H. Abbass. Analyzing anticorrelation in ensemble learning. In Proceedings of 2001 Conference on Australian Artificial Neural Networks and Expert Systems, pp. 22–27, 2001.

    Google Scholar 

  26. F. L. Minku, H. Inoue, and X. Yao. Negative correlation in incremental learning. Natural Computing, 8(2):289–320, 2009.

    Article  MathSciNet  MATH  Google Scholar 

  27. L. L. Minku, A. White, and X. Yao. The impact of diversity on on-line ensemble learning in the presence of concept drift. IEEE Transactions on Knowledge and Data Engineering, 22(5): 730–742, 2010.

    Article  Google Scholar 

  28. M. F. Møller. A scaled conjugate gradient algorithm for fast supervised learning. Neural Network, 6(4):525–533, 1993.

    Article  Google Scholar 

  29. R. M. Neal. Bayesian learning for neural networks. Springer, New York, 1996.

    Book  MATH  Google Scholar 

  30. B. D. Ripley. Pattern Recognition and Neural Networks. Cambridge University Press, UK, 1996.

    Book  MATH  Google Scholar 

  31. N. Srinivas and K. Deb. Multiobjective function optimization using nondominated sorting genetic algorithms. Evolutionary Computation, 2(3):221–248, 1995.

    Article  Google Scholar 

  32. V. N. Vapnik. The Nature of Statistical Learning Theory. New York: Springer-Verlag, 1995.

    Book  MATH  Google Scholar 

  33. S. Wang, H. Chen, and X. Yao. Negative correlation learning for classification ensembles. In Proceedings of the 2010 International Joint Conference on Neural Networks (IJCNN’10), pp. 2893–2900, 2010.

    Google Scholar 

  34. S. Wang and X. Yao. Diversity analysis on imbalanced data sets by using ensemble models. In Proceedings of the 2009 IEEE Symposium on Computational Intelligence and Data Mining (CIDM’09), pp. 324–331, 2009.

    Google Scholar 

  35. S. Wang and X. Yao. Diversity exploration and negative correlation learning on imbalanced data sets. In Proceedings of the 2009 International Joint Conference on Neural Networks (IJCNN’09), pp. 3259–3266, 2009.

    Google Scholar 

  36. X. Yao. Evolving artificial neural networks. Proceedings of the IEEE, 87(9):1423–1447, 1999.

    Article  Google Scholar 

Download references

Acknowledgements

This work has been funded by the European Commission’s 7th Framework Program, under grant Agreement INSFO-ICT-270428 (iSense).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huanhuan Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Chen, H., Cohn, A.G., Yao, X. (2012). Ensemble Learning by Negative Correlation Learning. In: Zhang, C., Ma, Y. (eds) Ensemble Machine Learning. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9326-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-9326-7_6

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-9325-0

  • Online ISBN: 978-1-4419-9326-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics