Advertisement

Autonomous Modal Parameter Estimation: Application Examples

  • D. L. Brown
  • R. J. Allemang
  • A. W. Phillips
Conference paper
Part of the Conference Proceedings of the Society for Experimental Mechanics Series book series (CPSEMS)

Abstract

Autonomous modal parameter estimation is an attractive approach when estimating modal parameters (frequency, damping, mode shape, and modal scaling) as long as the results are physically reasonable. Frequently, significant post processing is required to tune the autonomous estimates. A general autonomous method is demonstrated with no post processing of the modal parameters. Example case histories are given for simple measurement cases taken from the laboratory (circular plate) as well as realistic field measurement cases involving significant noise and difficulty (bridge). These application case histories explore the successes and failures of the autonomous modal parameter estimation method and demonstrate the limitations of practical application of automated methods.

Keywords

Modal Parameter Circular Plate Modal Vector Reference File Short Dimension 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hawkins, F. J., "An Automatic Resonance Testing Technique for Exciting Normal Modes of Vibration of ComplexStructures", Symposium IUTAM, "Progres Recents de la Mecanique des Vibrations Lineaires", 1965, pp. 37-41.Google Scholar
  2. 2.
    Hawkins, F. J., "GRAMPA -An Automatic Technique for Exciting the Principal Modes of Vibration of ComplexStructures", Royal Aircraft Establishment, RAE-TR-67-211, 1967.Google Scholar
  3. 3.
    Taylor, G. A., Gaukroger, D. R., Skingle, C. W., "MAMA - A Semi-Automatic Technique for Exciting the Principal Modes of Vibration of Complex Structures", Aeronautical Research Council, ARC-R/M-3590, 1967, 20 pp.Google Scholar
  4. 4.
    Chauhan, S., Tcherniak, D., "Clustering Approaches to Automatic Modal Parameter Estimation", Proceedings,International Modal Analysis Conference (IMAC), 14 pp., 2008.Google Scholar
  5. 5.
    Chhipwadia, K.S., Zimmerman, D.C. and James III, G.H., "Evolving Autonomous Modal Parameter Estimation",Proceedings, International Modal Analysis Conference (IMAC), pp. 819-825, 1999.Google Scholar
  6. 6.
    James III, G.H., Zimmerman, D.C., Chhipwadia, K.S., "Application of Autonomous Modal Identification to Traditional and Ambient Data Sets", Proceedings, International Modal Analysis Conference (IMAC), pp. 840-845, 1999.Google Scholar
  7. 7.
    Lanslots, J., Rodiers, B., Peeters, B., "Automated Pole-Selection: Proof-of-Concept and Validation", Proceedings, International Conference on Noise and Vibration Engineering (ISMA), 2004.Google Scholar
  8. 8.
    Lau, J., Lanslots, J., Peeters, B., Van der Auweraer, "Automatic Modal Analysis: Reality or Myth?", Proceedings,International Modal Analysis Conference (IMAC), 10 pp., 2007.Google Scholar
  9. 9.
    Lim, T., Cabell, R. and Silcox,R., "On-line Identification of Modal Parameters Using Artificial Neural Networks", Journal of Vibration and Accoustics, Vol. 118 No. 4, pp. 649-656, 1996.CrossRefGoogle Scholar
  10. 10.
    Liu, J.M., Ying, H.Q., Shen, S., Dong, S.W., "The Function of Modal Important Index in Autonomous ModalAnalysis", Proceedings, International Modal Analysis Conference (IMAC), 6 pp., 2007.Google Scholar
  11. 11.
    Mevel, L., Sam, A., Goursat, M., "Blind Modal Identification for Large Aircrafts", Proceedings, International ModalAnalysis Conference (IMAC), 8 pp., 2004.Google Scholar
  12. 12.
    Mohanty, P., Reynolds, P., Pavic, A., "Automatic Interpretation of Stability Plots for Analysis of a Non-Stationary Structure", Proceedings, International Modal Analysis Conference (IMAC), 7 pp., 2007.Google Scholar
  13. 13.
    Pappa, R.S., James, G.H., Zimmerman, D.C., "Autonomous Modal Identification of the Space Shuttle Tail Rudder", ASME-DETC97/VIB-4250, 1997, Journal of Spacecrafts and Rockets, Vol. 35 No. 2, pp. 163-169, 1998.CrossRefGoogle Scholar
  14. 14.
    Pappa, R.S., Woodard, S. E., and Juang, J.-N., "A Benchmark Problem for Development of Autonomous StructuralModal Identification", Proceedings, International Modal Analysis Conference (IMAC), pp 1071-1077, 1997Google Scholar
  15. 15.
    Parloo, E., Verboven, P., Guillaume, P., Van Overmeire, M., "Autonomous Structural Health Monitoring - Part II: Vibration-based In-Operation Damage Assesment", Mechanical Systems and Signal Processing (MSSP), Vol. 16 No. 4, pp. 659-675, 2002.Google Scholar
  16. 16.
    Poncelet, F., Kerschen, G., Golinval, J.C., "Operational Modal Analysis Using Second-Order Blind Identification", Proceedings, International Modal Analysis Conference (IMAC), 7 pp., 2008.Google Scholar
  17. 17.
    Rainieri, C., Fabbrocino, G., Cosenza, E., "Fully Automated OMA: An Opportunity for Smart SHM Systems",Proceedings, International Modal Analysis Conference (IMAC), 9 pp., 2009.Google Scholar
  18. 18.
    Takahashi, K., Furusawa, M., "Development of Automatic Modal Analysis", Proceedings, International ModalAnalysis Conference (IMAC), pp. 686-692, 1987.Google Scholar
  19. 19.
    Vanlanduit, S., Verboven, P., Schoukens, J., Guillaume, P. "An Automatic Frequency Domain Modal ParameterEstimation Algorithm", Proceedings, International Conference on Structural System Identification, Kassel, Germany, pp. 637-646, 2001.Google Scholar
  20. 20.
    Vanlanduit, S., Verboven, P., Guillaume, P., Schoukens, J., "An Automatic Frequency Domain Modal ParameterEstimation Algorithm", Journal of Sound and Vibration, Vol. 265, pp. 647-661, 2003.CrossRefGoogle Scholar
  21. 21.
    Verboven P., E. Parloo, P. Guillame, and M. V. Overmeire, "Autonomous Modal Parameter Estimation Based On AStatistical Frequency Domain Maximum Likelihood Approach", Proceedings, International Modal Analysis Conference (IMAC), pp. 15111517, 2001.Google Scholar
  22. 22.
    Yam, Y., Bayard, D.S., Hadaegh, F.Y., Mettler, E., Milman, M.H., Scheid, R.E., "Autonomous Frequency DomainIdentification: Theory and Experiment", NASA JPL Report JPL Publication 89-8, 204 pp., 1989.Google Scholar
  23. 23.
    Allemang, R.J., Brown, D.L., Phillips, A.W., "Survey of Modal Techniques Applicable to Autonomous/Semi-Autonomous Parameter Identification", Proceedings, International Conference on Noise and Vibration Engineering (ISMA),2010.Google Scholar
  24. 24.
    Phillips, A.W., Allemang, R.J., Brown, D.L., "Autonomous Modal Parameter Estimation: Methodology",Proceedings, International Modal Analysis Conference (IMAC), 25 pp., 2011.Google Scholar
  25. 25.
    Allemang, R.J., Phillips, A.W., Brown, D.L., "AuParameter Estimation: StatisticalConsiderations", Proceedings, International Modal Analysis ConfAC), 25 pp., 2011.Google Scholar
  26. 26.
    Allemang, R.J., Phillips, A.W., "The Unified Matrix to Understanding Modal ParameterEstimation: An Update", Proceedings, International Conference on Noise and Vibration Engineering (ISMA), 2004.Google Scholar
  27. 27.
    Allemang, R.J., Brown, D.L., "A Unified Matrix Polynomial Approach to Modal Identification", Journal of Sound and Vibration Vol. 211, No. 3, pp. 301-322, April 198Google Scholar
  28. 28.
    Allemang, R.J., Phillips, A.W., Brown, D.L., "Combined State Order and Model Order Formulations in the Unified Matrix Polynomial Method (UMPA)", Proceedings, International Modal Analysis Conference (IMAC), 25 pp., 2011.Google Scholar

Copyright information

© Springer Science + Business Media, LLC 2011

Authors and Affiliations

  • D. L. Brown
    • 1
  • R. J. Allemang
    • 1
  • A. W. Phillips
    • 1
  1. 1.Structural Dynamics Research Laboratory School of Dynamic Systems College of Engineering and Applied ScienceUniversity of CincinnatiCincinnatiUSA

Personalised recommendations