Chemoreception pp 593-601 | Cite as

Role of HIF-1 in Physiological Adaptation of the Carotid Body during Chronic Hypoxia

  • Man-Lung Fung
  • George L. Tipoe
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 536)


Chemoreceptors in the carotid body (CB) increase intracellular calcium and afferent nerve discharge in hypoxia and, thus, play an important role in the regulation of cardiorespiratory responses to hypoxia (see Gonzalez et al 1994 for review). Also, the CB plays a central role in the ventilatory acclimatization to hypoxia involving an initial rapid increase in ventilation followed by a progressive hyperventilation during hours and weeks of hypoxic exposure (see Bisgard, 2000; Lahiri et al 2001 for reviews). It is well known that the CB enlarges in human and animals living at high altitude or exposed to chronic hypoxia. The enlargement may be due to an increased vasculature, cellular hypertrophy and hyperplasia of the glomus cells in the CB (Dhillon et al. 1984; McGregor et al 1984; Bee et al 1986).


Vascular Endothelial Growth Factor Carotid Body Chronic Hypoxia Glomus Cell Hypoxic Ventilatory Response 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bee, D., Pallott, D. J., and Barer, G. R., 1986, Division of type 1 and endothelial cells in the hypoxic rat carotid body. Acta. Anat. 126: 226–229.PubMedCrossRefGoogle Scholar
  2. Bisgard, G. E., 2000, Carotid body mechanisms in acclimatization to hypoxia. Resp. Physiol.. 121:237–246.CrossRefGoogle Scholar
  3. Chavez, J. C, Agani, F., Piciule, P., and LaManna, J. C, 2000, Expression of hypoxia-inducible factor-lα in the brain of rats during chronic hypoxia. J. Appl. Physiol. 89: 1937–1942.PubMedGoogle Scholar
  4. Chen, J., He, J., Dinger, B., and Fidone, J., 2000, Cellular mechanisms involved in rabbit carotid bidy excitation elicited by endothelin peptides. Respir. Physiol. 121: 13–23.PubMedCrossRefGoogle Scholar
  5. Chen, Y., Tipoe, G. L., Liong, E., Leung, P. S., Lam, S.-Y., Iwase R., Tjong, Y.-W., and Fung, M.-L., 2002, Chronic hypoxia enhances endothelin-1-induced intracellular calcium elevation in rat carotid body chemoreceptors and up-regulates ETA receptor expression. Pflügers Archiv 443: 565–573.PubMedCrossRefGoogle Scholar
  6. Clarke, J. A., Daly, M. B., Marshall, J. M., Ead, H. W., and Hennessy, E. M., 2000, Quantitative studies of the vasculature of the carotid body in the chronically hypoxic rat. Braz. J. Med. Biol. Res. 33: 331–340.PubMedCrossRefGoogle Scholar
  7. Dhillon, D. P., Barer, G. R., and Walsh, M, 1984, The enlarged carotid body of the chronically hypoxic and hypercapnic rat: a morphometric analysis. Q. J. Exp. Physiol. 69: 301–317.PubMedGoogle Scholar
  8. Fung, M.-L., Lam, S.-Y., Chen, Y., Dong, X., and Leung, P. S., 2001a, Functional expression of angiotensin II receptors in type-I cells of the rat carotid body. Pflügers Archiv 441: 474–480.CrossRefGoogle Scholar
  9. Fung, M.-L., Ye, J.-S., and Fung, P. C. W., 2001b, Acute hypoxia elevates nitric oxide ration in rat carotid body in vitro. Pflügers Archiv 442: 903–909.CrossRefGoogle Scholar
  10. Gonzalez, C, Almaraz, L., Obeso, A., and Rigual, R., 1994, Carotid body chemoreceptors: From natural stimuli to sensory discharges. Physiol. Rev. 74: 829–898PubMedGoogle Scholar
  11. Gozal, D., Gozal, E., Gozal, Y. M., and Torres, J. E., 1996, Nitric oxide synthase isoforms and peripheral chemoreceptor stimulation in conscious rats. Neuroreport 7: 1145–1148.PubMedCrossRefGoogle Scholar
  12. Harik, S. I., Hritz, M. A, and LaManna, J. C, 1995, Hypoxia-induced brain angiogenesis in the adult rat. J. Physiol. (Lond.) 485: 525–530.Google Scholar
  13. He, L., Chen, J., Dinger, B., Stensaas, L., and Fidone, S., 1996, Endothelin modulates chemoreceptor cell function in mammalian carotid body. Adv. Exp. Med. Biol. 410: 305–310.PubMedCrossRefGoogle Scholar
  14. Jiang, B. H., Semenza, G. L., Bauer C, and Marti H. H., 1996, Hypoxia-inducible factor 1 levels vary exponentially over a physiologically relevant range of O2 tension. Am. J. Physiol. 271: C1172–1180.PubMedGoogle Scholar
  15. Kline, D. D., Yang, T., Premkumar, R. D., Thomas, A. J., and Prabhakar, N. R., 2000, Blunted respiratory responses to hypoxia in mutant mice deficient in nitric oxide synthase-3. J. Appl. Physiol. 88: 1496–1508.PubMedGoogle Scholar
  16. Lahiri, S., Rozanov, C, Roy, A., Storey, B., and Buerk, D. G., 2001, Regulation of oxygen sensing in peripheral arterial chemoreceptors. Int. J. Biochem. & Cell Biol. 33: 755–774.CrossRefGoogle Scholar
  17. McGregor, K. H., Gil, J., and Lahiri, S., 1984, A morphometric study of the carotid body in chronically hypoxic rats. J. Appl. Physiol. 57: 1430–1438.PubMedGoogle Scholar
  18. Paciga, M., Vollmer, C, and Nurse, C, 1999, Role of ET-1 in hypoxia-induced mitosis of cultured rat carotid body chemoreceptors. Neuroreport 10: 3739–3744.PubMedCrossRefGoogle Scholar
  19. Palmer, L. A., Semenza, G. L., Stoler, M. H., and Johns, R. A., 1998, Hypoxia induces type II NOS gene expression in pulmonary artery endothelial cells via HIF-1. Am. J. Physiol. 274: L212–219.PubMedGoogle Scholar
  20. Prabhakar, N. R., 1999, NO and CO as second messengers in oxygen sensing in the carotid body. Resp. Physiol. 115: 161–168.CrossRefGoogle Scholar
  21. Semenza, G. L., 2000, HIF-1: mediator of physiological and pathophysiological responses to hypoxia. J. Appl. Physiol. 88: 1474–1480.PubMedGoogle Scholar
  22. Wang, Z.-Z., Dinger, B. G., Stensaas, L. J., and Fidone, S. J., 1995, The role of nitric oxide in carotid chemoreception. Biol. Signals 4: 109–116.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • Man-Lung Fung
    • 1
  • George L. Tipoe
    • 1
  1. 1.Departments of Physiology and AnatomyUniversity of Hong KongHong KongChina

Personalised recommendations