Advertisement

Chemoreception pp 525-533 | Cite as

Prenatal Hypoxia and Early Postnatal Maturation of the Chemoafferent Pathway

  • Julie Peyronnet
  • Jean-Christophe Roux
  • David Perrin
  • Jean-Marc Pequignot
  • Hugo Lagercrantz
  • Yvette Dalmaz
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 536)

Keywords

Carotid Body Cont Group Ventilatory Response Hypoxic Exposure Tyrosine Hydroxylase Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. Bartlett, D., Jr. and Tenney, S. M. (1970) Control of breathing in experimental anemia. Respir Physiol 10, 384–95.PubMedCrossRefGoogle Scholar
  2. Bissonnette, J. M. (2000) Mechanisms regulating hypoxic respiratory depression during fetal and postnatal life. Am J Physiol Regul Integr Comp Physiol 278, Rl391–400.Google Scholar
  3. Carlsson, ¦¡., Davis, J. N., Kehr, W., Lindqvist, M. and Atack, C. V. (1972) Simultaneous measurement of tyrosine and tryptophan hydroxylase activities in brain in vivo using an inhibitor of the aromatic amino acid decarboxylase. Naunyn Schmiedebergs Arch Pharmacol 275, 153–68.PubMedCrossRefGoogle Scholar
  4. Eden, G. J. and Hanson, M. A. (1987) Effects of chronic hypoxia from birth on the ventilatory response to acute hypoxia in the newborn rat. J Physiol 392, 11–9.PubMedGoogle Scholar
  5. Errchidi, S., Hilaire, G. and Monteau, R. (1990) Permanent release of noradrenaline modulates respiratory frequency in the newborn rat: an in vitro study. J Physiol 429, 497–510.PubMedGoogle Scholar
  6. Forster, ¦§. V., Pan, L. G., Lowry, T. F., Serra, ¦¡., Wenninger, J. and Martino, P. (2000) Important role of carotid chemoreceptor afferents in control of breathing of adult and neonatal mammals. Respir Physiol 119, 199–208.CrossRefGoogle Scholar
  7. Fung, M. L., Wang, W., Darnall, R. A. and St John, W. M. (1996) Characterization of ventilatory responses to hypoxia in neonatal rats. Respir Physiol 103, 57–66.PubMedCrossRefGoogle Scholar
  8. Gordon, D., Cohen, R. J., Kelly, D., Akselrod, S. and Shannon, D. C. (1984) Sudden infant death syndrome: abnormalities in short term fluctuations in heart rate and respiratory activity. PediatrRes 18, 921–6.Google Scholar
  9. Hertzberg, T., Hellstrom, S., Holgert, H., Lagercrantz, H. and Pequignot, J. M. (1992) Ventilatory response to hyperoxia in newborn rats born in hypoxia¡ª possible relationship to carotid body dopamine. J Physiol 456, 645–54.PubMedGoogle Scholar
  10. Hertzberg, T., Hellstrom, S., Lagercrantz, H. and Pequignot, J. M. (1990) Development of the arterial chemoreflex and turnover of carotid body catecholamines in the newborn rat. J Physiol 425, 211–25.PubMedGoogle Scholar
  11. Hofer, M. A. (1986) Role of carotid sinus and aortic nerves in respiratory control of infant rats. Am J Physiol 251, R811–7.PubMedGoogle Scholar
  12. Holgert, H., Hokfelt, T., Hertzberg, T. and Lagercrantz, H. (1995) Functional and developmental studies of the peripheral arterial chemoreceptors in rat: effects of nicotine and possible relation to sudden infant death syndrome. Proc Natl Acad Sci U S A 92,7575–9.PubMedCrossRefGoogle Scholar
  13. Kumer, S. C. and Vrana, ¦ª. ¦¥. (1996) Intricate regulation of tyrosine hydroxylase activity and gene expression. JNeurochem 67, 443–62.CrossRefGoogle Scholar
  14. Lahiri, S., Brody, J. S., Motoyama, E. K. and Velasquez, T. M. (1978) Regulation of breathing in newborns at high altitude. J Appl Physiol 44, 673–8.PubMedGoogle Scholar
  15. Lahiri, S., Rozanov, C. and Cherniack, N. S. (2000) Altered structure and function of the carotid body at high altitude and associated chemoreflexes. High Alt Med Biol 1, 63–74.PubMedCrossRefGoogle Scholar
  16. Ling, L., Olson, E. B., Jr., Vidruk, E. H. and Mitchell, G. S. (1996) Attenuation of the hypoxic ventilatory response in adult rats following one month of perinatal hyperoxia. J Physiol 495, 561–71.PubMedGoogle Scholar
  17. Ling, L., Olson, E. B., Jr., Vidruk, E. H. and Mitchell, G. S. (1998) Slow recovery of impaired phrenic responses to hypoxia following perinatal hyperoxia in rats. J Physiol 511, 599–603.PubMedCrossRefGoogle Scholar
  18. Mortola, J. P. and Saiki, C. (1996) Ventilatory response to hypoxia in rats: gender differences. Respir Physiol 106, 21–34.PubMedCrossRefGoogle Scholar
  19. Nolan, P. C. and Waldrop, T. G. (1996) Ventrolateral medullary neurons show age-dependent depolarizations to hypoxia in vitro. Brain Res Dev Brain Res 91, 111–20.PubMedCrossRefGoogle Scholar
  20. Nyakas, C, Buwalda, B. and Luiten, P. G. (1996) Hypoxia and brain development. Prog Neurobiol 49, 1–51.PubMedGoogle Scholar
  21. Okada, Y., Kawai, ¦¡., Muckenhoff, ¦ª. and Scheid, P. (1998) Role of the pons in hypoxic respiratory depression in the neonatal rat. Respir Physiol 111, 55–63.CrossRefGoogle Scholar
  22. Okubo, S. and Mortola, J. P. (1988) Long-term respiratory effects of neonatal hypoxia in the rat. J Appl Physiol 64, 952–8.PubMedCrossRefGoogle Scholar
  23. Perrin, D. G., Cutz, E., Becker, L. E., Bryan, A. C, Madapallimatum, A. and Sole, M. J. (1984) Sudden infant death syndrome: increased carotid-body dopamine and noradrenaline content. Lancet 2, 535–7.PubMedCrossRefGoogle Scholar
  24. Peyronnet, J., Roux, J. C, Geloen, ¦¡., Tang, L. Q., Pequignot, J. M., Lagercrantz, ¦§. and Dalmaz, Y. (2000) Prenatal hypoxia impairs the postnatal development of neural and functional chemoafferent pathway in rat. J Physiol 524 Pt 2, 525–37.CrossRefGoogle Scholar
  25. Porter, J. C. (1986) Relationship of age, sex, and reproductive status to the quantity of tyrosine hydroxylase in the median eminence and superior cervical ganglion of the rat. Endocrinology 118, 1426–32.PubMedCrossRefGoogle Scholar
  26. Schechtman, V. L., Harper, R. M., Kluge, ¦ª. ¦¡., Wilson, A. J. and Southall, D. P. (1990) Correlations between cardiorespiratory measures in normal infants and victims of sudden infant death syndrome. Sleep 13, 304–17.PubMedGoogle Scholar
  27. Seidler, F. J. and Slotkin, T. A. (1990) Effects of acute hypoxia on neonatal rat brain: regionally selective, long-term alterations in catecholamine levels and turnover. Brain Res Bull 24, 157–61.PubMedCrossRefGoogle Scholar
  28. Slotkin, ¦³. ¦¡., Cowdery, T. S., Orband, L., Pachman, S. and Whitmore, W. L. (1986) Effects of neonatal hypoxia on brain development in the rat: immediate and long-term biochemical alterations in discrete regions. Brain Res 374, 63–74.PubMedCrossRefGoogle Scholar
  29. Soulier, V., Dalmaz, Y., Cottet-Emard, J. M., Lagercrantz, ¦§. and Pequignot, J. M. (1997) Long-term influence of neonatal hypoxia on catecholamine activity in carotid bodies and brainstem cell groups of the rat. J Physiol 498, 523–30.PubMedGoogle Scholar
  30. Waites, ¦¢. ¦¡., Ackland, G. L., Noble, R. and Hanson, M. A. (1996) Red nucleus lesions abolish the biphasic respiratory response to isocapnic hypoxia in decerebrate young rabbits. J Physiol 495, 217–25.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • Julie Peyronnet
    • 1
  • Jean-Christophe Roux
    • 1
  • David Perrin
    • 1
  • Jean-Marc Pequignot
    • 1
  • Hugo Lagercrantz
    • 2
  • Yvette Dalmaz
    • 1
  1. 1.Laboratoire de Physiologie des Régulations Métaboliques, Cellulaires et MoléculairesUMR CNRS 5123, Faculté de MédecineLyon cedexFrance
  2. 2.Department of Woman and Child HealthKarolinska InstituteSweden

Personalised recommendations