Advertisement

Honoring Pierre Dejours : His Contribution to the Study of the Role of the Arterial Chemoreceptors in the Regulation of Breathing in Humans

  • Henry Gautier
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 536)

Abstract

In the mid-fifties, Dejours became interested in the contribution of the arterial chemoreceptors in the regulation of breathing in humans. The role, but not the intimate mechanisms, of the receptors was relatively well known thanks to the experiments of recording of afferent activity and of electrical stimulation or denervation of afferent nerves but, for obvious reasons, these experiments could not be performed in humans. Human beings are provided with the same chemosensitive structures as laboratory animals and the fact that functional responses to respiratory stimuli (hypoxia and/or hypercapnia) are about the same in humans and experimental animals makes it likely that in human beings, the part played by the reflexogenic drive is the same as in animals.

Keywords

Carotid Body Ventilatory Response Oxygen Inhalation Peripheral Chemoreceptor Hyperoxic Exposure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bisgard, G.E., and Neubauer, J.A., 1995, Peripheral and central effects of hypoxia. In Regulation of Breathing (S.A. Dempsey and A.I. Pack, eds), Marcel Dekker, Inc, New York, pp. 617–668.Google Scholar
  2. Bouverot, P., Flandrois, R., Pucinelli, R., and Dejours, P., 1965, Etude du rôle des chémorécepteurs artériels dans la régulation de la respiration pulmonaire chez le chien éveillé. Arch. Int. Pharmac.Thérap. 157 : 257–271.Google Scholar
  3. Bouverot, P., and Leitner, L.-M, 1972, Arterial chemorecptors in the domestic fowl. Respir. Physiol 15: 310–320.PubMedCrossRefGoogle Scholar
  4. Dejours, P., 1957, Intérêt méthodologique de l’étude d’un organisme vivant à la phase initiale de rupture d’un équilibre physiologique. Compt. Rend. Acad. Sci. Paris 245 : 1946–1948.Google Scholar
  5. Dejours, P., 1962, Chemoreflexes in breathing. Physiol. Rev. 42 : 335–358.PubMedGoogle Scholar
  6. Dejours, P., Girard, F., Labrousse, Y., and Teillac, A., 1959, Etude de la régulation ventilation de repos chez l’Homme en haute altitude. Rev. Fr. Etudes Clin. Biol. 4 : 115–127.Google Scholar
  7. Dejours, P., Labrousse, Y., Raynaud, J., and Flandrois, R., 1958a, Etude du stimulus gaz carbonique de la ventilation chez l’Homme. J. Physiol. Paris 50: 239–243.Google Scholar
  8. Dejours, P., Labrousse, Y., Raynaud, J., Girard, F., and Teillac, A., 1958b, Stimulus oxygène de la ventilation au repos et au cours de l’exercice musculaire, à basse altitude (50m), chez l’Homme. Rev. Fr. Etudes Clin. Biol. 3 : 105–123.Google Scholar
  9. Dejours, P., Labrousse, Y., Raynaud, J., and Teillac, A., 1957, Stimulus oxygène chémoréfîexe de la ventilation à basse altitude (50m) chez l’Homme. I Au repos. J. Physiol. Paris 49 : 115–124.PubMedGoogle Scholar
  10. Dripps, R.D., and Comroe, J.H., Jr, 1947, The effect of the inhalation of high and low oxygen concentrations on respiration, pulse rate, ballisto-cardiogram and arterial oxygen saturation oximeter) of normal individuals. Amer. J. Physiol. 149 : 277–291. PubMedGoogle Scholar
  11. Easton, P. A., Slykerman, L.J., and Anthonisen, N.R., 1986, Ventilatory response to sustained hypoxia in normal adults. J. Appl. Physiol. 61 : 906–911.PubMedGoogle Scholar
  12. Easton, P.A., Slykerman, L.J., and Anthonisen, N.R., 1988, Recovery of the ventilatory response to hypoxia in normal adults. J. Appl. Physiol. 64 : 521–528.PubMedCrossRefGoogle Scholar
  13. Gautier, H., Bonora, M., Gaudy, J.H., 1986, Ventilatory response of the conscious or anesthetized cat to oxygen breathing. Respir. Physiol. 65 : 181–196.PubMedCrossRefGoogle Scholar
  14. Girard, F., Lacaisse, A., and Dejours, P., 1960, Le stimulus O2 ventilatoire à la période néonatale chez l’Homme. J. Physiol. Paris 52 : 108–109.PubMedGoogle Scholar
  15. Girard, F., Teillac, A., Lefrançois, R., and Lacaisse, A., 1959, Etude du stimulus oxygène de la ventilation en hypoxie aiguë. J. Physiol. Paris 51 : 469–470.PubMedGoogle Scholar
  16. Gozal, D., 1998, Potentiation of hypoxic ventilatory response by hyperoxia in the conscious rat :putative role of nitric oxide. J. Appl. Physiol. 85 : 129–132.PubMedGoogle Scholar
  17. Guz, A., Noble, M.I.M., Widdicombe, J.G., Trenchard, D., and Mushin, W.W., 1966, Peripheral chemoreceptor block in man. Respir. Physiol 1 : 38–40.PubMedCrossRefGoogle Scholar
  18. Honda, Y., Tani, H., Masuda, A., Kobayashi, T., Nishino, T., Kimura, H., Masuyama, S., and Kuriyama, T., 1996, Effect of prior O2 breathing on ventilatory response to sustained isocapnic hypoxia in adult humans. J. Appl. Physiol. 81 : 1627–1632.PubMedGoogle Scholar
  19. Lefrançois, R., Gautier, H., and Pasquis, P., 1968, Ventilatory oxygen drive in acute and chronic hypoxia. Respir. Physiol. 4 : 217–228.CrossRefGoogle Scholar
  20. Leitner, L.-M., Pagès, B., Pucinelli, R., and Dejours, P., 1965, Etude simultanée de la ventilation et des décharges des chémorécepteurs du glomus carotidien chez le chat. 1 Au cours d’inhalations brèves d’oxygène pur. Arch. Int. Pharmac. Thérap. 154 : 421–426.Google Scholar
  21. Loeschcke, G.C., 1953, Spielen für die Ruheatmung des Menschen vom 02-Druck abhängige Erregungen des Chemoreceptoren eine Rolle ? Arch. ges.Physiol. 257 : 349–362.Google Scholar
  22. May, P., 1957, L’action immédiate de l’oxygène sur la ventilation chez l’homme normal. Helv. Physiol. Acta 15 : 230–240.Google Scholar
  23. Miller, M.J., and Tenney, S.M., 1975, Hyperoxic hyperventilation in carotid-deafferented cats Respir. Physiol. 23 : 23–30.PubMedCrossRefGoogle Scholar
  24. Mortola, J.P., and Gautier, H., 1995, Interaction between metabolism and ventilation : Effects of respiratory gases and temperature. In Regulation of Breathing (J.A. Dempsey and A.I. Pack, eds), Marcel Dekker, Inc, New York, pp. 1011–1064.Google Scholar
  25. Roux, J.C., Peyronnet, J., Pascual, O., Dalmaz, Y., and Péquignot, J.C., 2000, Ventilatory and central neurochemical reorganisation of O2 chemoreflex after carotid sinus nerve transection in rat. J. Physiol. London 522 : 493–501.PubMedCrossRefGoogle Scholar
  26. Shock, N.W., and Soley, M.H., 1940, Effect of breathing pure oxygen on respiratory volume in humans. Proc. Soc. Exp. Biol. Med. 44 : 418–420.Google Scholar
  27. Subramanian, S., Erokwu, B., Han, F., Dick, T.E., and Strohl, K.P., 2002, L-NAME differentially alters ventilatory behavior in Sprague-Dawley and Brown Norway rats. J. Appl. Physiol. 93 : 984–989.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • Henry Gautier
    • 1
  1. 1.Atelier de Physiologie RespiratoireFaculté de Médecine Saint-AntoineParisFrance

Personalised recommendations