Skip to main content

Part of the book series: Fundamental Materials Research ((FMRE))

Abstract

The type I and II clathrate hydrate structure can be thought of as a derivative of the four coordinated diamond lattice structure. In the Ge diamond lattice there is not enough space to hold Sr atoms between the Ge atoms, for example. The presence of these “guests” induces a change in the Ge clathrate to a more open structure: the clathrate structure. These types of “open structured” compounds have unique properties that are of interest for thermoelectric applications.1, 2The fact that clathrate compounds can be synthesized to possess glass-like lattice thermal conductivity and the ability to vary the electronic properties by changing the doping level in semiconducting variants, along with relatively good electronic properties, indicates that this system is a Phonon-Glass Electron Crystal (PGEC) system3and therefore of interest for thermoelectric applications. The ideal PGEC system would possess poor thermal properties (such as that for amorphous materials) while also possessing good electrical properties (as in perfect crystals). From the definition of the dimensionless figure of merit (ZT = S 2 T/ρκwhere Sis the Seebeck coefficient, Tis the absolute temperature, ρis the resistivity and κthe thermal conductivity) it is clear that a PGEC system would possess optimal thermoelectric properties. The key however is to replace the traditional alloy phonon scattering, which predominantly scatters the highest frequency phonons, by a much lower frequency resonance or disorder type scattering. This is the case in these materials, due to their unique crystal structure, and is why these materials have a low thermal conductivity. In these materials certain aspects of investigations of “atomic engineering” on the nanoscale also presents itself through the role of the cage-like structures and the ability to fill the atomic cages with various types of atoms. Their crystal structure is one of the most conspicuous aspects of these compounds and directly determines much of their interesting and unique properties, including their thermoelectric properties, as will be described in detail below.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G.S. Nolas, J.W. Sharp and H.J. Goldsmid, Thermoelectrics: Basics Principles and New Materials Developments(Springer-Verlag, Heidelberg, 2001).

    Google Scholar 

  2. G.A. Slack, in: “Thermoelectric Materials – New Directions and Approaches”, edited by T.M. Tritt, M.G. Kanatzidis, H.B. Lyon, Jr., and G.D. Mahan (Mat. Res. Soc. Symp. Proc. Vol. 478, Pittsburgh, PA, 1997), pp. 47–54.

    Google Scholar 

  3. G.A. Slack, in: CRC Handbook of Thermoelectrics, edited by D.M. Rowe (CRC Press, Boca Raton, FL, 1995), p. 407.

    Google Scholar 

  4. G.S. Nolas, G.A. Slack and S.B. Schujman: in Semiconductors and Semimetals Vol. 69, edited by T.M. Tritt (Academic Press, 2001) pp. 255 – 300.

    Google Scholar 

  5. G.S. Nolas, in: Thermoelectric Materials 1998 -- The Next Generation Materials for Small-Scale Refrigeration and Power Generation Applications, edited by T.M. Tritt, G. Mahan, H.B. Lyon, Jr. and M.G. Kanatzidis (Mater. Res. Soc. Symp. Proc. Vol. 545, Piittsburgh, PA, 1999), pp. 435–442.

    Google Scholar 

  6. V.L. Kuznetsov, L.A. Kuznetsova, A.E. Kaliazin and D.M. Rowe,J. Appl. Phys. 87, 7871–7875 (2000).

    Article  CAS  Google Scholar 

  7. S. Paschen, W. Carrillo-Cabrera, A. Bentien, V.H. Tran, M. Baenitz, Y. Grin and F. Steglich,Phys. Rev. B 64, 214404/1-11 (2001).

    Article  Google Scholar 

  8. S. Paschen, V.H. Tran, M. Baenitz, W. Carrillo-Cabrera, Y. Grin and F. Steglich, Phys. Rev. B 65, 134435- 1-9(2002).

    Article  Google Scholar 

  9. L. Mollnitz, N.P. Blake and H. Matiu, J. Chem. Phys. 117, 1302–1312 (2002).

    Article  CAS  Google Scholar 

  10. G.A. Jeffery, in Inclusion Compounds, Vol. 1, edited by J.L. Atwood, J.E.D. Davies and D.D. MacNicol (Academic Press, New York, 1984) pp. 135–190.

    Google Scholar 

  11. G. S. Nolas, J. L. Cohn, G. A. Slack and S. B. Schujman, Appl. Phys. Lett. 73, 178–180 (1998).

    Article  CAS  Google Scholar 

  12. J.L. Cohn, G.S. Nolas, V. Fessatidis, T.H. Metcalf and G.A. Slack, Phys. Rev. Lett. 82, 779–782 (1999).

    Article  CAS  Google Scholar 

  13. G.S. Nolas, J.L. Cohn, J.S. Dyck, C. Uher and J. Yang, Phys. Rev.B 65, 165201/1-6 (2002).

    Article  Google Scholar 

  14. G.S. Nolas, T.J.R. Weakley, J.L. Cohn and R. Sharma, Phys. Rev. B 61, 3845–3850 (2000).

    Article  CAS  Google Scholar 

  15. B.C. Sales, B.C. Chakoumakos, R. Jin, J.R. Thompson and D. Mandrus, Phys. Rev. B 63, 245113/1-8 (2001).

    Article  Google Scholar 

  16. A. Bentien, B.B. Iverson, J.D. Bryan, G.D. Stucky, A.E.C. Palmqvist, A.J. Schultz and R.W. Henning, J. Appl. Phys. 91, 5694–5699 (2002).

    Article  CAS  Google Scholar 

  17. G.S. Nolas, B.C. Chakoumakos, B. Mahieu, G.J. Long and T.J.R. Weakley, Chem. Mater. 12, 1947–1953 (2000).

    Article  CAS  Google Scholar 

  18. V. Keppens, M. A. McGuire, A. Teklu, C. Laermans, B.C. Sales, D. Mandrus and B.C. Chakoumakos, Physica B 316-317, 95–100 (2002).

    Article  CAS  Google Scholar 

  19. G.S. Nolas and C.A. Kendziora,Phys. Rev. B 62, 7157–7161 (2000).

    Article  CAS  Google Scholar 

  20. J. Dong, O.F. Sankey, G.K. Ramachandran and P.F. McMillan, J. Appl. Phys. 87, 7726–7734 (2000).

    Article  CAS  Google Scholar 

  21. J. Dong and O.F. Sankey, J. Phys. Condens. Matter. 11, 6129–6145 (1999).

    Article  CAS  Google Scholar 

  22. C.W. Myles, J. Dong, O.F. Sankey, C.A. Kendziora and G.S. Nolas,Phys. Rev. B 65, 235208/1-10 (2002).

    Article  Google Scholar 

  23. M. Imai, K. Nishida, T. Kimura and K. Yamada, J. Alloys & Comp 335, 270–276 (2002).

    Article  CAS  Google Scholar 

  24. H. Kawaji, H. Horie, S. Yamanaka and M. Ishikawa, Phys. Rev. Lett. 74, 1427–1430 (1995).

    Article  CAS  Google Scholar 

  25. Y. Zhang, P.L. Lee, G.S.Nolas, and A.P. Wilkinson, Appl. Phys. Lett. 80, 2931–2933 (2002).

    Article  CAS  Google Scholar 

  26. B. C. Chakoumakos, B. C. Sales, D. G. Mandrus and G. S. Nolas, J. Alloys and Comp. 296, 80–86 (1999).

    Article  Google Scholar 

  27. B.C. Chakoumakos, B.C. Sales and D.G. Mandrus, J. Alloys & Comp 322, 127–134 (2001).

    Article  CAS  Google Scholar 

  28. S. Latturner, X. Bu, N. Blake, H. Metiu and G. Stucky, J. Solid State Chem. 151, 61–64 (2000).

    Article  CAS  Google Scholar 

  29. N.P. Blake, S. Latturner, J.D. Bryan, G.D. Stucky and H. Metiu,J. Chem. Phys. 115, 8060–8073 (2001).

    Article  CAS  Google Scholar 

  30. C.W. Myles, J. Dong and O.F. Sankey, Phys. Rev. B 64, 165202/1-11 (2001).

    Article  Google Scholar 

  31. see for example, N.F. Mott, J. Non-Cryst. Solids 1, 1 (1968).

    Article  CAS  Google Scholar 

  32. S. Groves and W. Paul, Phys. Rev. Lett. 11, 194–198 (1963).

    Article  CAS  Google Scholar 

  33. C. Cros, M. Pouchard and P. Hagenmuller,J. Solid State Chem. 2, 570–581 (1970).

    Article  CAS  Google Scholar 

  34. G.S. Nolas, D.G. Vanderveer, A.P. Wilkinson and J.L. Cohn, J. Appl. Phys. 91, 8970–8973 (2002).

    Article  CAS  Google Scholar 

  35. G.S. Nolas, D.T. Morelli, and T.M. Tritt, Annu. Rev. Mater. Sci. 29, 89–116 (1999), and references therein.

    Article  CAS  Google Scholar 

  36. C. Uher, in Semiconductors and Semimetals, Vol. 69, edited by Terry M. Tritt (Academic Press, New York, NY, 2000), pp. 139–254, and references therein.

    Google Scholar 

  37. B.C. Sales, D.G. Mandrus and B.C. Chakoumakos in: Semiconductors and Semimetals, Volume 70, edited by T.M. Tritt (Academic Press, NY, 2000), pp. 1–36.

    Google Scholar 

  38. G.S. Nolas, C.A. Kendziora, J. Gryko, J. Dong, A. Poddar, C.W. Myles and O.F. Sakey, J. Appl. Phys.submitted.

    Google Scholar 

  39. J. Dong, O.F. Sankey and G. Kern, Phys. Rev. B 60, 950–958 (1999).

    Article  CAS  Google Scholar 

  40. see also S. Bobev and S.C. Sevov,J. Solid State Chem. 153, 92 (2001).

    Article  Google Scholar 

  41. G.K. Ramachandran, J. Dong, O.F. Sankey and P.F. McMillan, Phys. Rev. B 63, 033102-1-4 (2000).

    Article  Google Scholar 

  42. S. Latturner, B.B. Iverson, J. Sepa, V. Srdanov and G. Stucky,Phys. Rev. B 63, 125403-1-8 (2001).

    Article  Google Scholar 

  43. J. Gryko, P.F. McMillan, R.F. Marzke, G.K. Ramachandran, D. Patton, S.K. Deb and O.F. Sankey, Phys. Rev. B 62, R7707–R7710 (2000).

    Article  CAS  Google Scholar 

  44. G.B Adams, M. O'Keeffe, A.A. Demkov, O.F. Sankey and Y-M. Huang, Physical Review B 49, 8048– 8053 (1994).

    Google Scholar 

  45. G.S. Nolas, M. Beekman, J. Gryko, G. Lamberton, T.M. Tritt and P.F. McMillan, Appl. Phys. Lett., submitted.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Nolas, G.S. (2003). Clathrate Thermoelectrics. In: Kanatzidis, M.G., Mahanti, S.D., Hogan, T.P. (eds) Chemistry, Physics, and Materials Science of Thermoelectric Materials. Fundamental Materials Research. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-9278-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-9278-9_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4872-6

  • Online ISBN: 978-1-4419-9278-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics