Block-Layer Concept for the Layered Cobalt Oxide: A Design for Thermoelectric Oxides

Part of the Fundamental Materials Research book series (FMRE)


A thermoelectric material is a material which generates electricity from heat through the Seebeck effect, and pumps heat through the Peltier effect. The thermo-electric conversion efficiency is characterized by the figure of merit Z= S 2/ρκ. (S, ρ, and κ are thermopower, resistivity, and thermal conductivity.) In order to attain the high thermoelectric efficiency, thermoelectric materials need large thermopower, low resistivity and low thermal conductivity. In conventional thermoelectric materials, however, S, ρ, and κcannot be controlled independently, because they depend on the carrier density. The thermoelectric performance is optimized near a carrier density of 1019cm-3, which is a typical value for a degenerate semiconduc-tor. Actually, the thermoelectric materials were mainly searched in the degenerate semiconductors of high mobility.


Carrier Density Thermoelectric Property Thermoelectric Material Thermoelectric Performance Block Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    I. Terasaki, Y. Sasago, and K. Uchinokura, Phys. Rev. B56, R12685–12687 (1997).Google Scholar
  2. 2.
    R. Funahashi and I. Matsubara, Appl. Phys. Lett. 79, 362–364 (2001).CrossRefGoogle Scholar
  3. 3.
    T. Ito and I. Terasaki, Jpn. J. Appl. Phys. 39, 6658–6660 (2000).CrossRefGoogle Scholar
  4. 4.
    H. Leligny, D. Grebille, O. Pérez, A. -C, Masset, M. Hervieu, C. Michel, and B. Raveau, C. R. Acad. Sci. Paris, Série IIc 2, 409–414 (1999).Google Scholar
  5. 5.
    S. Li, R. Funahashi, I. Matsubara, K. Ueno, and H. Yamada, J. Mater. Chem. 9, 1659–1660 (1999).CrossRefGoogle Scholar
  6. 6.
    Y. Miyazaki, K. Kudo, M. Akoshima, Y. Ono, Y. Koike, and T. Kajitani, Jpn. J. Appl. Phys. 39, L531–533 (2000).CrossRefGoogle Scholar
  7. 7.
    A. C. Masset, C. Michel, A. Maignan, M. Hervieu, O. Toulemonde, F. Studer, and B. Raveau, Phys. Rev. B62, 166–175 (2000).Google Scholar
  8. 8.
    Y. Miyazaki, M. Onode, T. Oku, M. Kikuchi, Y. Ishii, Y. Ono, Y. Morii, and T. Kajitani, J. Phys. Soc. Jpn. 71, 491–497 (2002).CrossRefGoogle Scholar
  9. 9.
    S. Lambert, H. Leligny, and D. Grebille, J. Solid State Chem. 160, 322–331 (2001).CrossRefGoogle Scholar
  10. 10.
    S. Hebert, S. Lambert, D. Pelloquin, and A. Maignan, Phys. Rev. B64, 172101–1-172101–4 (2001).Google Scholar
  11. 11.
    I. Terasaki, Mater. Trans. 42, 951–955 (2001).CrossRefGoogle Scholar
  12. 12.
    Y. Tokura and T. Arima, Jpn. J. Appl. Phys. 29, 2388–2402 (1990).CrossRefGoogle Scholar
  13. 13.
    H. Maeda, Y. Tanaka, M. Fukutumi, and T. Asano, Jpn. J. Appl. Phys. 27, L209–212 (1988).CrossRefGoogle Scholar
  14. 14.
    K. Takahata, Y. Iguchi, D. Tanaka, T. Itoh, and I. Terasaki, Phys. Rev. B61, 12551–12555 (2000).Google Scholar
  15. 15.
    K. Takahata and I. Terasaki, Jpn. J. Appl. Phys. 41, 763–764 (2002).CrossRefGoogle Scholar
  16. 16.
    D. Pelloquin, A. Maignan, S. Hébert, C. Martin, M. Hervieu, C. Michel, L. B. Wang and Raveau, Will be published in Chem. Mater Google Scholar
  17. 17.
    T. Yamamoto, I. Tsukada, K. Uchinokura, M. Takagi, T. Tsubone, M. Ichihara and K. Kobayashi, Jpn. J. Appl. Phys. 39, L747–750 (2000).CrossRefGoogle Scholar
  18. 18.
    T. Fujii, I. Terasaki, T. Watanabe, and A. Matsuda, Jpn. J. Appl. Phys. 41, L783–786 (2002).CrossRefGoogle Scholar
  19. 19.
    R. Currat, cond-mat0203385.Google Scholar
  20. 20.
    G. A. Slack, CRC Handbook of Thermoelectrics, Chemical Rubber, Boca Raton FL, 1995, Chap. 34, p. 407edited by D. M. Rowe.Google Scholar
  21. 21.
    J. M. Tarascon, R. Ramesh, P. Barboux, M. S. Hedge, G. W. Hull, L. H. Greene, M. Giroud, Y. LePage, W. R. McKinnon, J. V. Waszczak and L. F. Schneemeyer, Solid State Commun. 71, 663–668 (1989).CrossRefGoogle Scholar
  22. 22.
    Y. Matsui, A. Maeda, Y. Tanaka and S. Horiuchi, Jpn. J. Appl. Phys. 27, L372–375 (1988).CrossRefGoogle Scholar
  23. 23.
    Y. Matsui, A. Maeda, K. Uchinokura and S. Takekawa, Jpn. J. Appl. Phys. 29, L273–276 (1990).CrossRefGoogle Scholar
  24. 24.
    J. H. P. M. Emmen, S. K. J. Lenczowski, J. H. J. Dalderop and V. A. M. Brabers, J. Crystal Growth 118, 477–482 (1992).CrossRefGoogle Scholar
  25. 25.
    D. J. Singh, Phys. Rev. B61, 13397–13402 (2000).Google Scholar
  26. 26.
    P. Link, D. Jaccard and P. Lejay, Physica B255, 207–213 (1996).Google Scholar
  27. 27.
    T. Itoh, T. kawata, T. Kitajima, and I. Terasaki, 1234, Int. Conf. Thermoelectr. Proc. 17, 595–597 (1998)Google Scholar
  28. 28.
    T. Fujii, I. Terasaki, T. Watanabe and A. Matsuda: Will be published in Physica C; cond-mat0204187.Google Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  1. 1.Department of Applied PhysicsWaseda UniversityTokyoJapan
  2. 2.Precursory Research for Embryonic Science and TechnologyJapan Science and Technology CorporationKawaguchiJapan

Personalised recommendations