Skip to main content

Part of the book series: Fundamental Materials Research ((FMRE))

  • 720 Accesses

Abstract

Despite a recent push to find better bulk thermoelectric (TE) materials for use near room temperature and pressure, no material has yet been reported whose ZT is significantly improved over that of the Bi2Te3-Sb2Te3alloys (where ZT≅1). These same alloys have been used in commercial TE devices for more than 30 years. At first glance, this may seem surprising, since the microscopic theory of thermoelectric effects in semiconductors was essentially fully developed in the 1960s and has been nicely summarized in recent reviews.1–5We know what properties we want, but we do not have any compounds that meet the many criteria for significant improvements in ZT. Yet TE research in the last half decade has refined the sense of what is needed, in terms of the composition and structure of materials classes that would have the characteristics necessary to make significant advances. In another approach, recent experiments by Badding et. al. on commercial Bi2Te3alloys show that increases in ZT by factors of 2 or more occur under non- hydrostatic pressure.6It seems possible that by suitable chemical modification of Bi2Te3, materials could be prepared that reach the same or higher ZT at atmospheric pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F. J. DiSalvo, Science, 285, 703 (1999).

    Article  CAS  Google Scholar 

  2. G. D. Mahan, B. Sales, and J. Sharp, Phys. Today, 50, 42 (1997).

    Article  CAS  Google Scholar 

  3. G. D. Mahan, Solid State Phys., 51, 82 (1998).

    Google Scholar 

  4. B. Sales, Mater. Res. Soc. Bull., 23, 15 (1998).

    CAS  Google Scholar 

  5. G. A. Slack, in: CRC Handbook of Thermoelectrics, edited by D. M. Rowe (Chemical Rubber Co., Boca Raton, FL, 1997), pp. 407–440.

    Google Scholar 

  6. D. A. Polvani, J. F. Meng, N. V. C. Shekar, J. Sharp, and J. V. Badding, Chem. Mater., 13, 2068–2071 (2001).

    Article  CAS  Google Scholar 

  7. R. P. Chasmar and R. Stratton, J. Electron. Control, 7, 52 (1959).

    Article  CAS  Google Scholar 

  8. A. P. Cracknell, J. Phys. C: Solid State Physics, 6, 826 (1973).

    Article  CAS  Google Scholar 

  9. C. Brinkmann, B. Eisenmann, and H. Schaefer, Z. fuer Anorg. Allg. Chem., 524, 83–89 (1985).

    Article  CAS  Google Scholar 

  10. G. Eulenberger, Acta Cryst. C, 42, 528–534 (1986).

    Article  Google Scholar 

  11. J. Fuhrmann and J. Pickardt, Acta Cryst. C, 45, 1808–1809 (1989).

    Article  Google Scholar 

  12. J. E. Iglesias and H. Steinfink, J. Solid State Chem., 6, 93–98 (1973).

    Article  CAS  Google Scholar 

  13. S. Jobic, F. Bodenan, P. Le Boterf, and G. Ouvrard, J. Alloys Compd., 230, 16–22 (1995).

    Article  CAS  Google Scholar 

  14. J. T. Lemley, Acta Cryst. B, 30, 549–550 (1974).

    Article  CAS  Google Scholar 

  15. E. Post and V. Kraemer, Mat. Res. Bull., 19, 1607–1612 (1984).

    Article  CAS  Google Scholar 

  16. C. Reiner and H. J. Deiseroth, Z. fuer Kristal., 213, 23 (1998).

    CAS  Google Scholar 

  17. K. Susa and H. Steinfink, J. Solid State Chem., 3, 75–82 (1971).

    Article  CAS  Google Scholar 

  18. P. Toffoli, P. Khodadad, and N. Rodier, Acta Cryst. B, 33, 285–287 (1977).

    Article  Google Scholar 

  19. H. Vincent and E. Bertaut, Acta Cryst. B, 32, 1749–1755 (1976).

    Article  Google Scholar 

  20. M. Muellenborn, R. F. Jarvis, Jr. B. G. Yacobi, R. B. Kaner, C. C. Coleman, and N. Haegel, Appl. Phys. A, A56, 317–321 (1993).

    Article  CAS  Google Scholar 

  21. R. E. Treece, E. G. Gillan, and R. B. Kaner, Comments Inorg. Chem., 16, 313–337 (1995).

    Article  CAS  Google Scholar 

  22. J. E. Garen, M. G. Barker, M. J. Begley, and A. S. Batsanov, J. Chem. Soc. Dalton Trans., 23, 3825–3830 (1995).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Reynolds, T.K., Bales, J.G., Kelley, R.F., DiSalvo, F.J. (2003). The Synthetic Search for Better Thermoelectrics. In: Kanatzidis, M.G., Mahanti, S.D., Hogan, T.P. (eds) Chemistry, Physics, and Materials Science of Thermoelectric Materials. Fundamental Materials Research. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-9278-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-9278-9_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4872-6

  • Online ISBN: 978-1-4419-9278-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics