Toward a First-Principles Determination of Transport Coefficients

Part of the Fundamental Materials Research book series (FMRE)


The efficiency of a thermoelectric device depends on its geometrical design and on the transport coefficients of the material that constitutes the active thermoelements. The figure of merit of the material
$$ Z = \frac{{\sigma S^2 }} {\kappa } $$
is an expression involving the electrical conductivity a, the thermopower or Seebeck coefficient Sand the thermal conductivity κ. This quantity that has units of inverse temperature is the key to determine if a particular material has potential for thermoelectric applications.


Band Structure Group Velocity Brillouin Zone Seebeck Coefficient Thermoelectric Material 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. L. Rode in Semiconductors and Semimetals, edited by R. K. Willardson and A. C. Beer (Academic Press, New York, 1975) Vol. 10.Google Scholar
  2. 2.
    C. B. Vining, J. Appl. Phys.69, 331 (1991).CrossRefGoogle Scholar
  3. 3.
    J. O. Sofo, G. D. Mahan, and J. Baars, J. Appl. Phys. 76, 2249 (1994).CrossRefGoogle Scholar
  4. 4.
    P. Hohenberg and W. Kohn, Phys. Rev.136, B864 (1964).CrossRefGoogle Scholar
  5. 5.
    W. Kohn and L. J. Sham, Phys. Rev.140, Al 133 (1965).CrossRefGoogle Scholar
  6. 6.
    Density Functional Theory(NATO ASI Series vol. 337), edited by E. K. U. Gross and R. M. Dreizler (Plenum Press, New York-London, 1995).Google Scholar
  7. 7.
    H. B. Callen, Thermodynamics(J. Wiley and Sons., New York, 1960) Ch. 17.Google Scholar
  8. 8.
    W. E. Bies, R. J. Radtke, H. Ehrenreich, and E. Runge, 1234, Phys. Rev. B 65, 085208 (2002).CrossRefGoogle Scholar
  9. 9.
    B. R. Nag, Electron Transport in Compound Semiconductors (Springer Verlag, Berlin, 1980)CrossRefGoogle Scholar
  10. 10.
    C. Ambrosch-Draxl and J. O. Sofo, Optical properties of solids within the full-potential linearized augmented planewave method in preparation.Google Scholar
  11. 11.
    P. Blaha, K. Schwarz, G. K. H. Madsen, D. Kvasnicka and J. Luitz, WIEN2k, An Augmented Plane Wave+ Local Orbitals Program for Calculating Crystal Properties(Karlheinz Schwarz, Techn. Universitat Wien, Austria), 2001. ISBN 3-9501031-1-2.Google Scholar
  12. T. Scheidemantel and J. O. Sofo, in preparation.Google Scholar
  13. 13. J. V. Badding, Pressure Tuning of Thermoelectric Materialsthis book.Google Scholar
  14. 14.
    C. F. Gallo, B. S. Chandrasekhar, and P. H. Suttler, J. Appl. Phys34, 144 (1963).CrossRefGoogle Scholar
  15. 15.
    Y. Kim, S. J. Youn, A. DiVenere, G. K. L. Wong, A. J. Freeman, J. B. Ketterson, L. J. Olafsen, I. Vurgaftman, J. R. Meyer, and C. A. Hoffman, 1234, Phys. Rev. B64, 235330 (2001).CrossRefGoogle Scholar
  16. 16.
    M. R. Black, Y. M. Lin, S. B. Cronin, O. Rabin, and M. S. Dresselhaus, 1234, Phys. Rev. B 65,195417 (2002).CrossRefGoogle Scholar
  17. 17.
    P. Larson, S. D. Mahanti, and M. G. Kanatzidis, Phys. Rev. B61, 8162 (2000).CrossRefGoogle Scholar
  18. 18.
    S. J. Youn and A. J. Freeman, Phys. Rev. B63, 085112 (2001).CrossRefGoogle Scholar
  19. 19.
    A. Fleszar, Phys. Rev. B64, 245204 (2001) and references therein.Google Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  1. 1.Materials Simulation Center and Department of PhysicsThe Pennsylvania State UniversityUSA

Personalised recommendations