Pressure Tuning of Thermoelectric Materials

Part of the Fundamental Materials Research book series (FMRE)


It is widely believed that significant improvements in the performance of thermoelectric materials are possible.1,2The development of such improved materials could lead to revolutionary advances in many important technologies, such as refrigeration, electric power generation, and cooling of both superconducting and conventional electronic components.2,3Because device efficiency depends critically on the product of the thermoelectric figure of merit, Z, and the temperature, T, the key issue is the identification of materials that exhibit enhanced values of ZT. Though there are currently many niche applications for thermoelectrics, no bulk materials are yet known that exhibit values of ZT (~4) necessary for thermoelectric refrigeration to be competitive with small refrigerant-based systems and thus to see widespread technological application. However, even more modest increases in ZT above the current best values (ZT~1) should lead to many more applications.1-3


Ambient Pressure Thermoelectric Property Thermoelectric Material Thermoelectric Power Lattice Thermal Conductivity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. D. Mahan, and J. O. Sofo,1234,Proc. Natl Acad. Sci. 93, 7436–7439 (1996).CrossRefGoogle Scholar
  2. 2.
    CRC handbook of thermoelectrics(ed. D. M. Rowe) (CRC Press, Boca Raton, F1, 1995).Google Scholar
  3. 3.
    F. J. DiSalvo,Science 285, 703–706 (1999).CrossRefGoogle Scholar
  4. 4.
    T. C. Harmon, and J. M. Honig,Thermoelectric and thermomagnetic effects and appli tions(McGraw Hill, New York, 1967).Google Scholar
  5. 5.
    N. W. Ashcroft, and N. D. Mermin,Solid State Physics(Holt, Rinehart, and Winston, 1976).Google Scholar
  6. 6.
    B. C. Sales, D. Mandrus, and R. K. Williams,Science 272, 1325 (1996).CrossRefGoogle Scholar
  7. 7.
    D. A. Polvani, J. F. Meng, N. V. C. Shekar, J. Sharp, and J. V. Badding,Chem. Mat.13,2068–2071(2001).CrossRefGoogle Scholar
  8. 8.
    R. D. Barnard, Thermoelectricity in metals and alloys(Taylor & Francis, London 1972).Google Scholar
  9. 9.
    J. V. Badding, J. F. Meng, and D. A. Polvani,Chem. Mat.10,2889–2894(1998).CrossRefGoogle Scholar
  10. 10.
    J. F. Meng, et al.,Chem. Mat. 12, 197–201 (2000).CrossRefGoogle Scholar
  11. 11.
    J. F. Meng, N. V. C. Shekar, J. V. Badding, D. Y. Chung, and M. G. J. Kanatzidis, Appl. Phys.90,2836–2839(2001).Google Scholar
  12. 12.
    J. F. Meng, N. V. C. Shekar, J. V. Badding, and G. S. Nolas,J. Appl. Phys 89, 1730–1733(2001).CrossRefGoogle Scholar
  13. 13.
    W. Paul, J. H. Burnett, and H. M. Cheong, in High-Pressure Science and Technology 1993 (eds. S. C. Schmidt, J. W. Shaner, G. Samara, and M. Ross) 545–548 (American Institute of Physics, New York, 1994).Google Scholar
  14. 14.
    M. Tomozawa, 26,43–74 (1996).Google Scholar
  15. 15.
    J. V. Badding, unpublished observation.Google Scholar
  16. 16.
    J. P. Locquet, et al. Nature 394, 453–456 (1998).CrossRefGoogle Scholar
  17. 17.
    U. Ghoshal, et al. Appl. Phys.Lett. 80, 3006–3008 (2002).CrossRefGoogle Scholar
  18. 18.
    D. A. Polvani, J. F. Meng, M. Hasegawa, and J. V. Badding,Rev. Sci. Instrum. 70, 3586–3589(1999).CrossRefGoogle Scholar
  19. 19.
    C. D. W. Jones, K. A. Regan, and F. J. DiSalvo, Phys. Rev. B 58, 16057–16063 (1998).CrossRefGoogle Scholar
  20. 20.
    D. Gerlich, and P. Andersson, J Phys. C:Solid State Phys. 15, 5211–5222 (1982).CrossRefGoogle Scholar
  21. 21.
    A. A. Averkin, Z. Z. Zhaparov, and L. S. Stilbans,Sov.Phys. Semicond. 51954–1956 (1972).Google Scholar
  22. 22.
    D. Y. Chung, et al.,J. Am. Chem. Soc. 119, 2504–2515 (1997).CrossRefGoogle Scholar
  23. 23.
    Y. M. Blanter, M. I. Kaganov, A. V. Pantsulaya, and A. A. Varlamov,Phys. Rep. 245, 159–257 (1994).CrossRefGoogle Scholar
  24. 24.
    I. M. Lifshitz, Sov. Phys.JETP 11, 1130–1135 (1960).Google Scholar
  25. 25.
    B. K. Godwal, et al. Phys. Rev. B 65, art. no.-140101 (2002).Google Scholar
  26. 26.
    A. A. Varlamov and A. V. Pantsulaya,Sov.Phys.JETP 62, 1263–1267 (1985).Google Scholar
  27. 27.
    A. A. Varlamov, V. S. Egorov, and A. V. Pantsulaya, Advan. Phys. 38, 469–564 (1989).CrossRefGoogle Scholar
  28. 28.
    S. J. Youn and A. J. Freeman,Phys. Rev. B 63, 085112 (2001).CrossRefGoogle Scholar
  29. 29.
    V. V. Sologub, et al. Sov. Phys. JETP 52, 1203–1206 (1980).Google Scholar
  30. 30.
    V. V. Sologub, R. V. Parfen’ev, and A. D. Goletskaya, JETP Lett. 21, 337–338 (1975).Google Scholar
  31. 31.
    P. Larson, S. D. Mahanti, and M. G. Kanatzidis, Phys. Rev. B 61, 8162 (2000).CrossRefGoogle Scholar
  32. 32.
    E. S. Itskevich, L. M. Kashirskay, and V. F. Kraidenov, Semiconductors 31, 276–278 (1996).CrossRefGoogle Scholar
  33. 33.
    B. K. Godwal, et al. Phys. Rev. B 57, 773–776 (1998).CrossRefGoogle Scholar
  34. 34.
    I. A. Abrikosov, Y. K. Vekilov, P. A. Korzhavyi, A. V. Ruban, and L. E. Shilkrot, Fiz. Tverd. Tela 34, 2922–2926 (1992).Google Scholar
  35. 35.
    E. Bruno, B. Ginatempo, E. S. Giuliano, A. V. Ruban, and Y. K. Vekilov, Phys. Rep.- Rev. Sec. Phys. Lett. 249, 353–419 (1994).Google Scholar
  36. 36.
    O. I. Velikokhatnyi, II Naumov, and E. V. Puchkarev, Phys. Solid State39, 872–876 (1997).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  1. 1.Department of Physics Pennsylvania State UniversityUniversity Park16802
  2. 2.Department of Chemistry, Pennsylvania State UniversityUniversity Park16802

Personalised recommendations