Skip to main content

Part of the book series: Fundamental Materials Research ((FMRE))

Abstract

The goal of this workshop on thermoelectric materials “Beyond Bismuth Telluride” was to inspire researchers in the thermoelectrics field to think boldly about the future of Thermoelectrics Science and Technology and to identify what it would take to make a big step forward in this research area. The field of thermoelectrics advanced rapidly in the 1950s when the basic science of thermoelectric materials became well established, the important role of heavily doped semiconductors as good thermoelectric materials became accepted, the thermoelectric material bismuth telluride was discovered and developed for commercialization, and the thermoelectrics industry was launched. At that time it was established that the effectiveness of a thermoelectric material could in an approximate way be described in terms of the dimensionless thermoelectric figure of merit, ZT= S 2σT/κ where S, σ Tand κ are the Seebeck coefficient, the electrical conductivity, the temperature and the thermal conductivity. Over the following 3 decades 1960–1990, only incremental gains were made in increasing ZT, with Bi2Te3remaining the best commercial material at ZT≈ 1. During that 3 decade period, the thermoelectrics field received little attention from the worldwide scientific research community.lNevertheless the thermoelectrics industry grew slowly but steadily, by finding niche applications for space missions, laboratory equipment, and medical applications, where cost and efficiency were not as important as energy availability, reliability, and predictability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. J. Goldsmid, Thermoelectric Refrigeration, Plenum Press, New York, 1964.

    Google Scholar 

  2. T. Harman, P. J. Taylor, D. L. Spears, M. P. Walsh, in: The 18th International Conference on Thermoelectrics: ICT Symposium Proceedings, Baltimore, Institute of Electrical and Electronics Engineers, Inc., Piscataway, NJ 09955-1331, 1999, p. 280.

    Google Scholar 

  3. M. S. Dresselhaus, Y. M. Lin, T. Koga, S. B. Cronin, O. Rabin, M. R. Black, G. Dresselhaus, Low dimensional thermoelectricity, in: T. M. Tritt (Ed.), Semiconductors and Semimetals: Recent Trends in Thermoelectric Materials Research III, Vol. 71, Academic Press, San Diego, CA, 2001, pp. 1–121, chapter 1.

    Chapter  Google Scholar 

  4. Z. Zhang, J. Y. Ying, M. S. Dresselhaus, Bismuth quantum-wire arrays fabricated by a vacuum melting and pressure injection process, J. Mater. Res. 13 (1998) 1745–1748.

    Article  CAS  Google Scholar 

  5. J. P. Heremans, C. M. Thrush, Z. B. Zhang, X. Z. Sun, M. S. Dresselhaus, J. Y. Ying, D. T. Morelli, Magnetoresistance of bismuth nanowire arrays: a possible transition from 1D to 3D localization, Phys. Rev. B. 58 (1998)R10091–R10095.

    Article  CAS  Google Scholar 

  6. O. Rabin, P. R. Herz, Y.-M. Lin, S. B. Cronin, A. I. Akinwande, M. S. Dresselhaus, Arrays of nanowires on silicon wafers, in: The 21st International Conference on Thermoelectrics: ICT Symposium Proceedings, Long Beach, CA, 2002.

    Google Scholar 

  7. O. Rabin, Y.-M. Lin, S. B. Cronin, M. S. Dresselhaus, Thermoelectric nanowires by electrochemical deposition, in: G. S. Nolas, D. C. Johnson, D. G. Mandus (Eds.), Thermoelectric Materials 2001 - Research and Applications: MRS Symposium Proceedings, Boston, December 2001, Vol. 691, Materials Research Society Press, Pittsburgh, PA, 2001, p. G8.9.

    Google Scholar 

  8. O. Rabin, P. R. Herz, S. B. Cronin, Y.-M. Lin, A. I. Akinwande, M. S. Dresselhaus, Nanofabrication using self-assembled alumina templates, in: J. A. Rogers, A. Karim, L. Merhari, D. Norris, Y. Xia (Eds.), Nonlithographic and Lithographic Methods for Nanofabrication: MRS Symposium Proceedings, Boston, November 2000, Vol. 636, Materials Research Society Press, Pittsburgh, PA, 2001, pp. D471–D476.

    Google Scholar 

  9. Y.-M. Lin, X. Sun, M. S. Dresselhaus, Theoretical investigation of thermoelectric transport properties of cylindrical Bi nanowires, Phys. Rev. B 62 (2000) 4610–4623.

    Article  CAS  Google Scholar 

  10. Y.-M. Lin, S. B. Cronin, J. Y. Ying, M. S. Dresselhaus, J. P. Heremans, Transport properties of Bi nanowire arrays, Appl. Phys. Lett. 76 (2000) 3944–3946.

    Article  CAS  Google Scholar 

  11. Y.-M. Lin, Thermoelectric properties of low-dimensional Bi and Bi1-xSbxalloy systems, Ph. D. thesis, Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science (January 2003).

    Google Scholar 

  12. O. Rabin, Y.-M. Lin, M. S. Dresselhaus, Anomalously high thermoelectric figure of merit in Bi1-xSbxnanowires by carrier pocket alignment, Appl. Phys. Lett. 79 (2001) 81–83.

    Article  Google Scholar 

  13. Y.-M. Lin, O. Rabin, S. B. Cronin, J. Y. Ying, M. S. Dresselhaus, Semimetal-semiconductor transition in Bi1-xSbxalloy nanowires and their thermoelectric properties, Appl. Phys. Lett. 80 (2002) 2493–2495.

    Article  Google Scholar 

  14. 14. F. J. DiSalvo, this volume.

    Google Scholar 

  15. Y.-M. Lin, S. B. Cronin, O. Rabin, J. Y. Ying, M. S. Dresselhaus, Transport properties of Bi1-xSbxalloy nanowires synthesized by pressure injection, Appl. Phys. Lett. 79 (2001) 677–679.

    Article  CAS  Google Scholar 

  16. J. Heremans, C. M. Thrush, Y.-M. Lin, S. Cronin, Z. Zhang, M. S. Dresselhaus, J. F. Mansfield, Bismuth nanowire arrays: synthesis and galvanomagnetic properties, Phys. Rev. B 61 (2000) 2921–2930.

    Article  CAS  Google Scholar 

  17. B. Lenoir, M. Cassart, J. P. Michenaud, H. Scherrer, S. Scheuer, Transport properties of Bi-rich Bi-Sb alloys, J. Phys. Chem. Solids 57 (1996) 89–99.

    Article  CAS  Google Scholar 

  18. Y.-M. Lin, O. Rabin, S. B. Cronin, J. Y. Ying, M. S. Dresselhaus, Experimental investigation of thermoelectric properties of Bi1-xSbxnanowire arrays, in: The 21st International Conference on Thermoelectrics: ICT Symposium Proceedings, Long Beach, CA, 2002.

    Google Scholar 

  19. T. C. Harman, P. J. Taylor, M. P. Walsh, D. L. Spears, Thermoelectric quantum-dot superlattices with high ZT, J. Electron. Mater. 29 (2000) L1–L4.

    Article  CAS  Google Scholar 

  20. Y.-M. Lin, O. Rabin, M. S. Dresselhaus, Segmented nanowires: a theoretical study of thermoelectric properties, in: The 21st International Conference on Thermoelectrics: ICT Symposium Proceedings, Long Beach, CA, 2002.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Dresselhaus, M.S., Lin, YM., Rabin, O., Black, M.R., Cronin, S.B., Dresselhaus, G. (2003). Overview of Bismuth Nanowires for Thermoelectric Applications. In: Kanatzidis, M.G., Mahanti, S.D., Hogan, T.P. (eds) Chemistry, Physics, and Materials Science of Thermoelectric Materials. Fundamental Materials Research. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-9278-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-9278-9_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4872-6

  • Online ISBN: 978-1-4419-9278-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics