Substitution Reactions on Metal Complexes

  • Smiljko Ašperger


A chemical bond, represented in terms of shared pairs of electrons, can be broken homolytically or heterolytically, as shown by the following equations:
$$ A: B \to A \cdot + \cdot B Homolysis $$
$$ A: B \to A^ + + :B^ - Heterolysis $$
$$ A: B \to A:^ - + B^ + Heterolysis $$


Crystal Field Substitution Reaction Trigonal Bipyramid Octahedral Complex Central Metal Atom 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Bethe, Ann. Physik, 1929, 3, 133.CrossRefGoogle Scholar
  2. 2.(a)
    L. E. Orgel, An Introduction to Transition Metal Chemistry: Ligand Field Theory, Wiley, New York 1960Google Scholar
  3. (b).
    J. S. Griffith, The Theory of Transition Metal Ions, Cambridge University Press, London 1961Google Scholar
  4. (c).
    C. K. Jørgensen, Absorption Spectra and Chemical Bonding in Complexes, Pergamon Press, London 1961Google Scholar
  5. (d).
    C. J. Ballhausen, Introduction to Ligand Field Theory, McGraw-Hill, New York 1962Google Scholar
  6. (e).
    B. N. Figgis, Introduction to Ligand Fields, Interscience, New York 1965.Google Scholar
  7. 3.
    L. E. Orgel, J. Chem. Soc. 1952, 4756.Google Scholar
  8. 4.
    C. K. Jørgensen, Acta Chem. Scand. 1955, 9, 605.Google Scholar
  9. 5.
    H. Taube, Chem. Rev. 1952, 50, 69.CrossRefGoogle Scholar
  10. 6.(a)
    F. Basolo and R. G. Pearson, Mechanism of Inorganic Reactions, Wiley, New York 1958Google Scholar
  11. (b).
    2nd ed., New York 1967, p. 69.Google Scholar
  12. 7.
    Ref. 6b, p. 67.Google Scholar
  13. 8.
    J. H. Van Vleck, J. Chem. Phys. 1939, 7, 72.CrossRefGoogle Scholar
  14. 9.
    J. S. Griffith and L. Orgel, Quart. Revs. 1957, 11, 381; J. S. Grifith, J. Inorg. Nucl. Chem. 1956, 2, 229.CrossRefGoogle Scholar
  15. 10.
    Ref. 6b, pp. 68-71.Google Scholar
  16. 11.
    J. M. Hollas, Modern Spectroscopy, 3rd. ed., Wiley, New York 1996, p. 96.Google Scholar
  17. 12.
    F. A. Cotton, G. Wilkinson, and P. L. Gaus, Basic Inorganic Chemistry, 3rd ed., Wiley, New York 1995, Chap. 23.Google Scholar
  18. 13.
    K. Breitschwerdt, Ber. Bunsenges. Phys. Chem. 1968, 72, 1046.Google Scholar
  19. 14.
    S. T. Spees, Jr., J. R. Perumareddi, and A. W. Adamson, J. Am. Chem. Soc. 1968, 90, 6626.CrossRefGoogle Scholar
  20. 15.
    J. K. Burdett, Adv. Inorg. Chem. Radiochem. A, 1978, 32, 297.Google Scholar
  21. 16.
    O. Mønsted, Acta Chem. Scand., Ser. A, 1978, 32, 297.CrossRefGoogle Scholar
  22. 17.
    B. M. Rode, G. J. Reihnegger, and S. Fujiwara, J. Chem. Soc., Faraday Trans. 2, 1980, 76, 1268.CrossRefGoogle Scholar
  23. 18.
    R. E. Connick and B. J. Alder, J. Phys. Chem. 1983, 87, 2764.CrossRefGoogle Scholar
  24. 19.
    R. Akesson, L. G. M. Petterson, M. Sandström, P. E. M. Siegbahn, and U. Wahlgren, J. Phys. Chem. 1993, 97, 3765.CrossRefGoogle Scholar
  25. 20.
    C. E. Mortimer, Chemistry, 5th ed., Wadsworth, Belmont 1983, p. 129.Google Scholar
  26. 21.
    M. Eigen, Pure Appl. Chem. 1963, 6, 105; C. M. Frey and J. Stuehr, Kinetics of Metal Ion Interactions with Nucleotides and Base Free Phosphates, in: H. Siegel, Ed., Metal Ions in Biological Systems, Vol. 1, Marcel Dekker, New York 1974, p. 69; F. A. Cotton and G. Wilkinson, Advanced Inorganic Chemistry, 5th ed., Wiley, New York 1988, p. 1289; L. Helm and A. E. Merbach, J. Chem. Soc, Dalton Trans. 2002, 633.CrossRefGoogle Scholar
  27. 22.
    R. van Eldik, T. Asano, and W. J. Le Noble, Chem. Rev. 1989, 89, 549; A. D. Hugi, L. Heim, and A. Merbach, Inorg. Chem. 1987, 26, 1763.CrossRefGoogle Scholar
  28. 23.
    W. L. Reynolds, I. Murati, and S. Ašperger, J. Chem. Soc, Dalton Trans. 1974, 719.Google Scholar
  29. 24.
    S. Ašperger, in: Advances in Solution Chemistry, Plenum Press, New York 1981, p. 105.CrossRefGoogle Scholar
  30. 25.
    C. H. Langford, Inorg. Chem. 1979, 18, 3288; D. Pavlović, D. Šutić, and S. Ašperger, J. Chem. Soc, Dalton Trans. 1976, 2406; I. Murati, D. Pavlović, A. Šustra, and S. Ašperger, ibid. 1978, 500; R. Juretić, D. Pavlović, and S. Ašperger, ibid. 1979, 2029; A. L. Coelho, H. E. Toma, and J. M. Malin, Inorg. Chem. 1983, 22, 2703.CrossRefGoogle Scholar
  31. 26.
    D. Pavlović, S. Ašperger, Z. Dokuzović, B. Jurišić, and Xh. Ahmeti, J. Chem. Soc., Dalton Trans. 1985, 1095.Google Scholar
  32. 27.
    A. Haim and W. K. Wilmarth, Inorg. Chem. 1962, 1, 573.CrossRefGoogle Scholar
  33. 28.
    A. Haim, Inorg. Chem. 1982, 21, 2887.CrossRefGoogle Scholar
  34. 29.
    Z. Dokuzović, D. Pavlović, S. Ašperger, and I. Murati, J. Chem. Soc, Chem. Commun. 1984, 1060; D. Pavlović, S. Ašperger, Z. Dokuzović, B. Jurišić, Xh. Ahmeti, M. Sertić, and I. Murati, J. Chem. Soc, Dalton Trans. 1985, 1095: S. Ašperger, G. Vrban, B. Cetina-Čizmek, and M. Orhanović, J. Chem. Soc, Dalton Trans. 1991, 1847.Google Scholar
  35. 30.
    J. D. Atwood, Inorganic and Organometalic Reaction Mechanisms, 2nd ed., VCH Publishers, New York 1997, p. 85.Google Scholar
  36. 31.
    P. C. Ford, J. K. Kuempel, and H. Taube, Inorg. Chem. 1968, 7, 1976.Google Scholar
  37. 32.
    J. L. Gleave, E. D. Hughes, and C. K. Ingold, J. Chem. Soc. 1935, 236.Google Scholar
  38. 33.
    C. K. Ingold, Structure and Mechanism in Organic Chemistry, Cornell University Press, Ithaca, NY 1953, p. 317.Google Scholar
  39. 34.
    S. Ašperger and C. K. Ingold, J. Chem. Soc. 1965, 1707.Google Scholar
  40. 35.
    F. Basolo and R. G. Pearson, Mechanism of Inorganic Reactions, Wiley, 2nd. ed., New York 1967, pp. 177–192.Google Scholar
  41. 36.
    F. J. Garrick, Nature, 1937, 139, 507.CrossRefGoogle Scholar
  42. 37.
    C. J. Hawkins, in: Absolute Configurations of Metal Complexes, Wiley, New York 1971.Google Scholar
  43. 38.
    Ref. 35, p. 257.Google Scholar
  44. 39.
    J. L. Burmeister, Coord. Chem. Rev. 1968, 3, 225.CrossRefGoogle Scholar
  45. 40.
    A. H. Norbury and A. I. P. Sinha, Quart. Revs. 1970, 24, 69.CrossRefGoogle Scholar
  46. 41.
    Ref. 35, pp. 19-20, 291-300.Google Scholar
  47. 42.
    K. F. Purcell and J. C. Kotz, Inorganic Chemistry, W B. Saunders, Philadelphia 1977, pp. 615–619.Google Scholar
  48. 43.
    H. E. Toma and R. C. Rocha, Croat. Chem. Acta, 2001, 74, 499.Google Scholar
  49. 44.
    IUPAC, G. J. Leigh (Ed.), Nomenclature of Inorganic Chemistry, Recommendations 1990, Blackwell, London 1990, p. 98.Google Scholar
  50. 45.
    A. Turco and C. Pecile, Nature, 1961, 191, 66.CrossRefGoogle Scholar
  51. 46.
    Ref. 43, p. 500.Google Scholar
  52. 47.
    F. Basolo, J. L. Burmeister, and A. J. Poe, J. Am. Chem. Soc. 1963, 85, 1700; J. L. Burmeister and F. Basolo, Inorg. Chem. 1964, 3, 1587.CrossRefGoogle Scholar
  53. 48.
    H. E. Toma, A. A. Batista, and H. B. Gray, J. Am. Chem. Soc. 1982, 104, 7509.CrossRefGoogle Scholar
  54. 49.
    H. E. Toma, J. M. Martins, and E. Giesbrecht, J. Chem. Soc., Dalton Trans. 1978, 1610.Google Scholar
  55. 50.
    A. A. Batista and H. E. Toma, An. Acad. Bras. Cienc. 1980, 52, 703.Google Scholar
  56. 51.
    H. E. Toma and M. M. Takayasu, An. Acad. Bras. Cienc. 1989, 61, 131.Google Scholar
  57. 52.
    R. G. Pearson, H. Sobel, and J. Songstad, J. Am. Chem. Soc. 1968, 90, 319.CrossRefGoogle Scholar
  58. 53.
    U. Belluco, L. Cattalini, F. Basolo, R. G. Pearson, and A. Turco, J. Am. Chem. Soc. 1965, 87, 241.CrossRefGoogle Scholar
  59. 54.
    U. Belluco, M. Martelli, and A. Orio, Inorg. Chem. 1966, 5, 582.CrossRefGoogle Scholar
  60. 55.
    C. G. Swain and C. B. Scott, J. Am. Chem. Soc. 1953, 75, 141.CrossRefGoogle Scholar
  61. 56.
    J. O. Edwards, J. Am. Chem. Soc. 1954, 76, 1540.CrossRefGoogle Scholar
  62. 57.
    W P. Jencks and J. Carriulo, J. Am. Chem. Soc. 1960, 82, 1778.CrossRefGoogle Scholar
  63. 58.
    Ref. 35, p. 140.Google Scholar
  64. 59.
    J. O. Edwards, J. Am. Chem. Soc. 1954, 76, 1540CrossRefGoogle Scholar
  65. (b).
    ibid. 1956, 78, 1819.CrossRefGoogle Scholar
  66. 60.
    R. B. Simpson, J. Am. Chem. Soc. 1961, 83, 4711.CrossRefGoogle Scholar
  67. 61.
  68. 62.
    W. J. Moore, Physical Chemistry, 4th ed., Prentice-Hall, Englewood Cliffs, NJ 1972, p. 702.Google Scholar
  69. 63.
    R. G. Pearson, J. Am. Chem. Soc., 1963, 85, 3533.CrossRefGoogle Scholar
  70. 64.
    R. G. Pearson, J. Chem. Educ. 1968, 45, 643.CrossRefGoogle Scholar
  71. 65.
    R. G. Pearson, Inorg. Chem. 1988, 27, 734; J. Chem. Educ. 1987, 64, 561.CrossRefGoogle Scholar
  72. 66.
    P. C. Maria, J. F. Gal, J. Francheschi, and E. Fargin, J. Am. Chem. Soc. 1987, 109, 483.CrossRefGoogle Scholar
  73. 67.
    R. G. Wilkins, Acc. Chem. Res. 1970, 3, 408.CrossRefGoogle Scholar
  74. 68.
    A. Haim, Inorg. Chem. 1970, 9, 426.CrossRefGoogle Scholar
  75. 69.
    F. Basolo, J. Chatt, H. B. Gray, R. G. Pearson, and B. L. Shaw, J. Chem. Soc. 1961, 2207.Google Scholar
  76. 70.
    W. A. Hermann, J. Organomet. Chem. 1990, 21, 383.Google Scholar
  77. 71.
    J. P. Day, F. Basolo, R. G. Pearson, L. F. Kangas, and P. M. Henry, J. Am. Chem. Soc. 1968, 90, 1925.CrossRefGoogle Scholar
  78. 72.
    D. Sonnenberger and J. D. Atwood, J. Am. Chem. Soc. 1980, 102, 3484.CrossRefGoogle Scholar
  79. 73.
    H. Wawaesik and F. Basolo, Inorg. Chem. Acta, 1969, 3, 113.CrossRefGoogle Scholar
  80. 74.
    L. I. B. Haines, D. Hopgood, and A. J. Poë, J. Chem. Soc. A, 1968, 421.Google Scholar
  81. 75.
    L. I. B. Haines and A. J. Poë, J. Chem. Soc. A, 1969, 2826.Google Scholar
  82. 76.
    A. M. Stolzenberg and L. Muetterties, J. Am. Chem. Soc. 1983, 105, 822.CrossRefGoogle Scholar


  1. 1.
    J. H. Espenson, Chemical Kinetics and Reaction Mechanisms, McGraw-Hill, New York 1981; 2nd ed., McGraw-Hill, New York 1995.Google Scholar
  2. 2.
    F. Basolo and R. G. Pearson, Mechanism of Inorganic Reactions, 2nd ed., Wiley, New York 1967.Google Scholar
  3. 3.
    R. G. Wilkins, Kinetics and Mechanism of Reactions of Transition Metal Complexes, 2nd ed., VCH Publishers, New York 1991.CrossRefGoogle Scholar
  4. 4.
    J. D. Atwood, Inorganic and Organic Reaction Mechanisms, 2nd ed., VCH Publishers, New York 1997.Google Scholar
  5. 5.
    F. Mathey and A. Sevin, Molecular Chemistry of the Transition Elements, Wiley, New York 1966.Google Scholar
  6. 6.
    R. B. Jordan, Reaction Mechanisms of Inorganic and Organometallic Systems, Oxford University Press, Oxford 1991.Google Scholar
  7. 7.
    J. O. Edwards, Inorganic Reaction Mechanisms, W. A. Benjamin, New York 1964.Google Scholar
  8. 8.
    M. L. Tobe, Inorganic Reaction Mechanisms, Thomas Nelson, London 1972.Google Scholar
  9. 9.
    K. F. Purcel and J. C. Kotz, Inorganic Chemistry, W. B. Saunders, Philadelphia 1977.Google Scholar
  10. 10.
    D. Benson, Mechanism of Inorganic Reactions in Solution, McGraw-Hill, London 1968.Google Scholar
  11. 11.
    W. Kaim and B. Schwederski, Bioinorganic Chemistry: Inorganic Elements in the Chemistry of Life, Wiley, New York 1996.Google Scholar
  12. 12.
    F. A. Cotton, G. Wilkinson, C. A. Murillo, and M. Bochmann, Advanced Inorganic Chemistry, 6th ed., Wiley, New York 1999.Google Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • Smiljko Ašperger
    • 1
  1. 1.Croatian Academy of Sciences and ArtsUniversity of ZagrebZagrebCroatia

Personalised recommendations