Mechanism of cellular uptake of long-chain fatty acids: Do we need cellular proteins?

  • James A. Hamilton
  • Wen Guo
  • Frits Kamp
Part of the Developments in Molecular and Cellular Biochemistry book series (DMCB, volume 38)

Abstract

Defining the mechanism(s) of long-chain fatty acid movement through membranes is vital to understanding whether or not entry of fatty acids into cells can be controlled at the plasma membrane of a typical cell. Is there a protein that acts as gatekeeper, regulating the amount, and possibly the type, of fatty acid that can enter the cell for metabolism? Is the lipid bilayer of the membrane highly permeable to fatty acids, and is the rate of simple diffusion on the time scale of metabolism? We will briefly review efforts to study diffusion in model lipid membranes that are devoid of proteins. We also present new results using dual fluorescence approaches showing that fatty acids diffuse very rapidly across the plasma membrane of the adipocyte. (Mol Cell Biochem 239: 17–23, 2002)

Key words

fatty acid-binding protein FAT/CD36 passive diffusion 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Civelek VN, Hamilton JA, Tornhcim K, Kelly KL, Corkcy BE: Intraccllular pH in adipocytes: Effects of free fatty acid diffusion across the plasma membrane, lipolytic agonists, and insulin. Proc Natl Acad Sci USA 93: 10139–10144, 1996PubMedCrossRefGoogle Scholar
  2. 2.
    Hamilton JA, Johnson RA, Corkey B, Kamp F: Fatty acid transport: the diffusion mechanism in model and biological membranes. J Mol Neurosci 16: 99–108, 2001PubMedCrossRefGoogle Scholar
  3. 3.
    Doody MC, Pownall HJ, Kao YJ, Smith LC: Mechanism and kinetics of transfer of a fluorescent fatty acid between single-walled phosphatidylcholine vesicles. Biochemistry 19: 108–116, 1980PubMedCrossRefGoogle Scholar
  4. 4.
    Storch J, Kleinfeld AM: Transfer of long-chain fluorescent free fatty acids between unilamellar vesicles. Biochemistry 25: 1717–1726, 1986PubMedCrossRefGoogle Scholar
  5. 5.
    Kleinfeld AM, Storch J: Transfer of long-chain fluorescent fatty acids between small and large unilamellar vesicles. Biochemistry 32: 2053–2061, 1993PubMedCrossRefGoogle Scholar
  6. 6.
    Abumrad N, Harmon C, Ibrahimi A: Membrane transport of long-chain fatty acids: Evidence for a facilitated process. J Lipid Res 39: 2309–2318, 1998PubMedGoogle Scholar
  7. 7.
    Daniels C, Noy N, Zakim D: Rates of hydration of fatty acids bound to unilamellar vesicles of phosphatidylcholine or to albumin. Biochemistry 24: 3286–3292, 1985PubMedCrossRefGoogle Scholar
  8. 8.
    Cabrai DJ, Small DM, Lilly HS, Hamilton JA: Transbilayer movement of bile acids in model membranes. Biochemistry 26: 1801–1804, 1987CrossRefGoogle Scholar
  9. 9.
    Kamp F, Hamilton JA: pH gradients across phospholipid membranes caused by fast flip-flop of un-ionized fatty acids. Proc Natl Acad Sci USA 89: 11367–11370, 1992PubMedCrossRefGoogle Scholar
  10. 10.
    Kamp F, Hamilton JA: Movement of fatty acids, fatty acid analogues, and bile acids across phospholipid bilayers. Biochemistry 32: 11074–11086, 1993PubMedCrossRefGoogle Scholar
  11. 11.
    Kamp F, Zakim D, Zhang F, Noy N, Hamilton JA: Fatty acid flip-flop in phospholipid bilayers is extremely fast. Biochemistry 34: 11928–11937, 1995PubMedCrossRefGoogle Scholar
  12. 12.
    Zhang F, Kamp F, Hamilton JA: Dissociation of long and very long chain fatty acids from phospholipid bilayers. Biochemistry 35: 16055–16060, 1995CrossRefGoogle Scholar
  13. 13.
    Storch J, Lcchcne C, Kleinfcld AM: Direct determination of free fatty acid transport across the adipocyte plasma membrane using quantitative fluorescence microscopy. J Biol Chem 266: 13473–13476, 1991PubMedGoogle Scholar
  14. 14.
    Kleinfeld AM, Chu P, Romero C: Transport of long-chain native fatty acids across lipid bilayer membranes indicates that transbilayer flip-flop is rate limiting. Biochemistry 36: 14146–14158, 1997PubMedCrossRefGoogle Scholar
  15. 15.
    Fraser H, Coles SM, Woodford JK, Frolov AA, Murphy EJ, Schroeder F, Bernlohr DA, Grund V: Fatty acid uptake in diabetic rat adipocytes. Mol Cell Biochcm 167: 51–60, 1997Google Scholar
  16. 16.
    Pohl P, Rokitskaya TI, Pohl EE, Saparov SM: Permeation of phloretin across bilayer lipid membranes monitored by dipole potential and microelectrode measurements. Biochim Biophys Acta 1323: 163–172, 1997PubMedCrossRefGoogle Scholar
  17. 17.
    Abumrad NA, Perkins RC, Park JH, Park CR: Mechanism of long chain fatty acid permeation in the isolated adipocyte. J Biol Chem 256: 9183–9191, 1981PubMedGoogle Scholar
  18. 18.
    Zakim D: Fatty acids enter cells by simple diffusion. Proc Soc Exp Biol Med 212: 5–14, 1996PubMedGoogle Scholar
  19. 19.
    Zakim D: Thermodynamics of fatty acid transfer. J Membr Biol 176: 101–109, 2000PubMedCrossRefGoogle Scholar
  20. 20.
    Trigalti BL, Gerber GE: The effect of intracellular pH on long-chain fatty acid uptake in 3T3-L1 adipocytes: Evidence that uptake involves the passive diffusion of protonated long-chain fatty acids across the plasma membrane. Biochem J 313: 487–494, 1996Google Scholar
  21. 21.
    Coburn CT, Knapp FF Jr, Febbraio M, Beets AL, Silverstein RL, Abumrad NA: Defective uptake and utilization of long chain fatty acids in muscle and adipose tissues of CD36 knockout mice. J Biol Chem 275: 32523–32529, 2000PubMedCrossRefGoogle Scholar
  22. 22.
    Febbraio M, Abumrad NA, Hajjar DP, Sharma K, Cheng W, Pcarce SF, Silverstein RL: A null mutation in murine CD36 reveals an important role in fatty acid and lipoprotein metabolism. J Biol Chem 274: 19055–19062, 1999PubMedCrossRefGoogle Scholar
  23. 23.
    Coburn CT, Hajri T, Ibrahimi A, Abumrad NA: Role of CD36 in membrane transport and utilization of long-chain fatty acids by different tissues. J Mol Neurosci 16: 117–121, 2001PubMedCrossRefGoogle Scholar
  24. 24.
    Hamilton JA: Fatty acid transport: difficult or easy? J Lipid Res 39: 467–481, 1998PubMedGoogle Scholar
  25. 25.
    Glatz JFC, Luiken JJFP, Bonen A: Involvement of membrane-associated proteins in the acute regulation of cellular fatty acid uptake. J Mol Neurosci 16: 123–132, 2001PubMedCrossRefGoogle Scholar
  26. 26.
    Stump DD, Fan X, Berk PD: Oleic acid uptake and binding by rat adipocytes define dual pathways for cellular fatty acid uptake. J Lipid Res 42: 509–520, 2001PubMedGoogle Scholar
  27. 27.
    Hamilton JA, Civelek VN, Kamp F, Tornhcim K, Corkey BE: Changes in internai pH caused by movement of fatty acids into and out of clonal pancreatic beta-cells (HIT). J Biol Chem 269: 20852–20856, 1994PubMedGoogle Scholar
  28. 28.
    Watkins PA, Lu JF, Steinberg SJ, Gould S.I, Smith KD, Braitcrman LT: Disruption of the Saccharomyces cerevisiae FAT1 gene decreases very long-chain acyl-CoA synthetase activity and elevates intracellular very long-chain fatty acid concentrations. J Biol Chem 273: 18210–18219, 1998PubMedCrossRefGoogle Scholar
  29. 29.
    Watkins PA, Pevsner J, Steinberg SJ: Human very long-chain acyl-CoA synthetasc and two human analoges: Initial characterization and relationship to fatty acid transport. Prostagland Leuckot Esscnt Fatty Acids 60: 323–328, 1999CrossRefGoogle Scholar
  30. 30.
    Bonen A, Luiken J, Arumugam Y, Glatz JFC, Tandon NN: Acute regulation of fatty acid uptake involves the redistribution of fatty acid translocase. J Biol Chem 275: 14501–14508, 2000PubMedCrossRefGoogle Scholar
  31. 31.
    Glatz JFC, Storch J: Unraveling the significance of cellular fatty acid-binding proteins. Curr Opin Lipid 12: 267–274, 2001CrossRefGoogle Scholar
  32. 32.
    Lewis SE, Listenberger LL, Ory DS, Schaffer JE: Membrane topology of the murine fatty acid transport protein 1. J Biol Chem 276: 37042–37050, 2001PubMedCrossRefGoogle Scholar
  33. 33.
    Abumrad N, Coburn C, Ibrahimi A: Membrane proteins implicated in long-chain fatty acid uptake by mammalian cells: CD36, FATP and FABPpm. Biochim Biophys Acta 1441: 4–13, 1999PubMedCrossRefGoogle Scholar
  34. 34.
    Ek-von Mentzer B, Zhang F, Hamilton JA: Binding of 13-HODE and 15-HETE to phospholipid bilayers, albumin, and intracellular fatty acid binding proteins. J Biol Chem 276: 15575–15580, 2001PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2002

Authors and Affiliations

  • James A. Hamilton
    • 1
    • 2
  • Wen Guo
    • 1
  • Frits Kamp
    • 1
  1. 1.Department of Physiology and BiophysicsBoston University School of MedicineBostonUSA
  2. 2.Department of Physiology and BiophysicsBoston University School of MedicineBostonUSA

Personalised recommendations