The Failing SHHF Rat Heart

  • Ruth A. Altschuld
  • Bethany J. Holycross
  • M. Judith Radin
  • Sylvia A. McCune
Part of the Progress in Experimental Cardiology book series (PREC, volume 5)


The SHHF/Mccfa cp (SHHF) rat is a reliable genetic model of congestive heart failure secondary to essential hypertension. These animals are closely related to the SHR (spontaneously hypertensive rat), but unlike the SHR, all animals, male and female, develop fatal congestive heart failure, most in the second year of life. SHHF rats are now being widely used by the pharmaceutical industry to evaluate potential therapeutic agents for preventing the maladaptive ultrastructural and biochemical remodeling associated with cardiac hypertrophy and the progression to failure. SHHF rats have also proved to be useful for mechanistic studies of the contractile and signaling abnormalities associated with heart failure. The failing SHHF rat heart is hypertrophied, dilated, fibrotic, and exhibits a pronounced decline in fractional shortening in vivo as measured by M-mode echocardiography. The response to ß-adrenoceptor stimulation is markedly blunted; there is evidence to suggest a decline in excitation-contraction coupling gain; and there is a decline in maximal Ca2+ activated force per cross sectional area. Isolated perfused failing SHHF hearts exhibit a predisposition to develop mechanical alternans, a negative force-frequency response and altered electromechanical restitution. Comparable abnormalities are seen in human heart failure, making the SHHF rat an ideal small animal model for investigating the natural history of cardiac hypertrophy, the transition to failure, and the unique properties of the failing myocardium.

Key words

Heart failure SHR rat hypertension cardiac hypertrophy adrenoceptor calcium 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    McCune SA, Park S, Radin MJ, Jurin RR., 1995. SHHF Mcc-fa cp rat model: a genetic model of congestive heart failure. In: Mechanisms of Heart Failure. Ed. PK Singal, IMC Dixon, RE Beamish and NS Dhalla, 91–106. Kluwer Academic Publishers.Google Scholar
  2. 2.
    Ishizuka T, Ernsberger P, Liu S, Bedol D, Lehman TM, Koletsky RJ, Friedman JE. 1998. Phenotypic consequences of a nonsense mutation in the leptin receptor gene (cp) in obese spontaneously hypertensive Koletsky rats (SHROB). J Nutr 128:pp 2299–2306.PubMedGoogle Scholar
  3. 3.
    Holycross BJ, Summers BM, Dunn RB, McCune SA. 1997. Plasma renin activity in heart failureprone SHHF/Mcc-fa cp Rats. Am J Physiol Heart Circ Physiol 273:H228–H233.Google Scholar
  4. 4.
    Katz AM. 1993. Metabolism of the Failing Heart. Cardioscience 4:199–203.PubMedGoogle Scholar
  5. 5.
    O’Donnell JM, Narayan P, Bailey MQ, Abduljalil AM, Altschuld RA, McCune SA, Robitaille PM. 1998.31P-NMR Analysis of congestive heart failure in the SHHF/Mcc-fa cp Rat Heart. J Mol Cell Cardiol 30:235–241.CrossRefGoogle Scholar
  6. 6.
    Sack MN, Rader TA, Park SH, Bastin J, McCune SA, Kelly DP. 1996. Fatty acid oxidation enzyme gene expression is downregulated in the failing heart. Circulation 94:2837–2842.PubMedCrossRefGoogle Scholar
  7. 7.
    Narayan P, McCune SA, Robitaille PML, Hohl CM, Altschuld RA. 1995. Mechanical alternans and the force-frequency relationship in failing rat hearts. J Mol Cell Cardiol 27:523–530.PubMedCrossRefGoogle Scholar
  8. 8.
    Traube L. 1872. Ein Fall Von Pulsus Bigeminus Nebst Berkmunger Uber Die Leberschwellungen Bei Klapperfehlern Und Uber Acute Leberatrophie. Berl klin Wschr 9:185–221.Google Scholar
  9. 9.
    Peters DG, Mitchell HL, McCune SA, Park S, Williams JH, Kandarian SC. 1997. Skeletal muscle sarcoplasmic reticulum Ca2+-ATPase gene expression in congestive heart failure. Circ Res 81:703–710.PubMedCrossRefGoogle Scholar
  10. 10.
    Phillips RM, Narayan P, Gómez AM, Dilly K, Jones LR, Lederer WJ, Altschuld RA. 1998. Sarcoplasmic reticulum in heart failure: central player or bystander? Cardiovas Res 37:346–351.CrossRefGoogle Scholar
  11. 11.
    Narayan P. 1996. Mechanical alternans and the force-frequency relationship in failing rat hearts. Dissertation: The Ohio State University.Google Scholar
  12. 12.
    Dumitrescu C, Narayan P, Efimov IR, Cheng Y, McCune SA, Altschuld RA. 2002. Mechanical alternans and restitution in failing SHHF rat left ventricles. Am J Physiol Heart Circ Physiol 282: H1320–H1326.PubMedGoogle Scholar
  13. 13.
    Gomez AM, Valdivia HH, Cheng H, Lederer MR, Santana LF, Cannell MB, McCune SA, Altschuld RA, Lederer WJ. 1997. Defective excitation-contraction coupling in experimental cardiac hypertrophy and heart failure. Science 276:800–806.PubMedCrossRefGoogle Scholar
  14. 14.
    Meyers MB, Pickel VM, Sheu SS, Sharma VK, Scotto KW, Fishman GI. 1995. Association of sorcin with the cardiac ryanodine receptor. J Biol Chem 270:26411–26418.PubMedCrossRefGoogle Scholar
  15. 15.
    Lokuta AJ, Meyers MB, Sander PR, Fishman GI, Valdivia HH. 1997. Modulation of cardiac ryanodine receptors by sorcin. J Biol Chem 272:25333–25338.PubMedCrossRefGoogle Scholar
  16. 16.
    Dumitrescu C, Narayan P, Cheng Y, Efimov IR, Altschuld RA. 2002. Phase I and phase II of shortterm mechanical restitution in perfused rat left ventricles. Am J Physiol Heart Circ Physiol 282: H1311–H1319.PubMedGoogle Scholar
  17. 17.
    Pérez NG, Hashimoto K, McCune S, Altschuld RA, Marbán E. 1999. Origin of contractile dysfunction in heart failure—calcium cycling versus myofilaments. Circulation 99:1077–1083.PubMedCrossRefGoogle Scholar
  18. 18.
    Kögler HA, Altschuld R, McCune S. Marbán E. 2000. Positive inotropic effects of xanthine oxidase inhibition in a rat model of congestive heart failure. Biophys J 78:641.Google Scholar
  19. 19.
    Hohl CM, Hu B, Fertel RH, Russell JC, McCune SA, Altschuld RA. 1993. Effects of obesity and hypertension on ventricular myocytes: Comparison of cells from adult SHHF/Mcc-fa cp and JCR: LA-cp rats. Cardiovasc Res 27:238–242.PubMedCrossRefGoogle Scholar
  20. 20.
    Anderson KM, Eckhart AD, Willette RN, Koch WJ. 1999. The myocardial ß-adrenergic system in spontaneously hypertensive heart failure (SHHF) rats. Hypertension 33:402–407.PubMedCrossRefGoogle Scholar
  21. 21.
    Eckhart AD, Koch WJ. 2002. Expression of a β-adrenergic receptor kinase inhibitor reverses dysfunction in failing cardiomyocytes. Mol Ther 5:74–79.PubMedCrossRefGoogle Scholar
  22. 22.
    Harding VB, Jones LR, Lefkowitz RJ, Koch WJ, Rockman HA. 2001. Cardiac ßARK1 inhibition prolongs survival and augments β-blocker therapy in a mouse model of severe heart failure. Proc Nad Acad Sci USA 98:5809–5814.CrossRefGoogle Scholar
  23. 23.
    Rockman HA, Chien KR, Choi DJ, Iaccarino G, Hunter JJ, Ross JJ, Lefkowitz RJ, Koch WJ. 1998. Expression of a β-adrenergic receptor kinase 1 inhibitor prevents the development of myocardial failure in gene-targeted mice. Proc Nad Acad Sci USA 95:7000–7005.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • Ruth A. Altschuld
    • 1
  • Bethany J. Holycross
    • 1
  • M. Judith Radin
    • 1
  • Sylvia A. McCune
    • 1
  1. 1.Dorothy M. Davis Heart and Lung Research InstituteThe Ohio State University Medical CenterColumbusUSA

Personalised recommendations