The Use of Bone Marrow Mesenchymal Stem Cells to Repair the Infarcted Heart

  • Shinji Tomita
  • Ren-Ke Li Sam Parbhakar
  • Osman Al-Radi
  • Richard D. Weisel
  • Donald A. G. Mickle
Part of the Progress in Experimental Cardiology book series (PREC, volume 5)


Following a myocardial infarction heart cells are necrosed and others hibernate because they are underperfused. Since adult bone marrow contains stromal cells, that can differentiate into myogenic and endothelial progenitor cells, stromal cell transplantation of the damaged heart may restore both myocardial structure and function. This paper reviews the theory and use of bone marrow stromal cells as a source of heart cells.

Key words

Bone marrow stem cells transplants myocardial infarction angiogenesis cardiomyogenesis myocardial function 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kajstura J, Leri A, Finato N, Di Loreto C, Beltrami CA, and Anversa P. 1998. Myocyte proliferation in end-stage cardiac failure in humans. Proc Natl Acad Sci USA 95(15):8801–8805.PubMedCrossRefGoogle Scholar
  2. 2.
    Marelli D, Deschene C, Al-Elfy M, Kao RL, and Chiu RC. 1992. Cell transplantation for myocardial repair: An experimental approach. Cell Transplantation 1(6):383–390.PubMedGoogle Scholar
  3. 3.
    Li, R-K, Jia, Z-Q, Weisel, RD, Mickle, DAG, Zhang J, Mohabeer MK, Rao V, and Ivanov J. 1996. Cardiomyocyte transplantation improves heart function. Annals of Thoracic Surgery 62(3):654–661.PubMedCrossRefGoogle Scholar
  4. 4.
    Li, R-K, Mickle, DAG, Weisel RD, Mohabeer MK, Zhang J, Rao V, Li GM, Merante F, and Jia, Z-Q 1997. The natural history of fetal rat cardiomyocytes transplanted into adult rat myocardial scar tissue. Circulation 96(suppl 11) 11-179–11-87.Google Scholar
  5. 5.
    Gronthos S, Simmons P. 1996. The biology and application of human bone marrow stromal cell precursors. J Hematother 5(1): 15–23.CrossRefGoogle Scholar
  6. 6.
    Waller EK, Olweus JL-J, Huang S, Bguyen M, Guo GR, and Terstappen L. 1995. The “common stem cell” hypothesis reevaluated: human fetal bone marrow contains separate populations of hematopoietic and stromal progenitors. Blood 85(9):2422–2435.PubMedGoogle Scholar
  7. 7.
    Islam A, Glomski C, and Henderson ES. 1990. Bone lining (endosteal) cells and hematopoiesis reevaluated: a light microscopic study of normal and pathologic human bone marrow in plasticembedded sections. Anat Rec 227(3):300–306.PubMedCrossRefGoogle Scholar
  8. 8.
    Quesenberry PJ, Crittenden RB, Lowry P, Kittler EW, Rao S, Peters S, Ramshw H, and Stewart FM. 1994. In vitro and in vivo studies of stromal niches. Blood Cells 20(1):97–104.PubMedGoogle Scholar
  9. 9.
    Moore KA, Em AH, and Lemischka IR. 1997. In vitro maintenance of highly purified, transplantable hematopoietic stem cells. Blood 89(12):4337–4347.PubMedGoogle Scholar
  10. 10.
    Peault B. 1996. Hematopoietic stem cell emergence in embryonic life: developmental hematology revisted. J Hematother 5(4):369–378.PubMedCrossRefGoogle Scholar
  11. 11.
    Asahara T, Murohara T, Sullivan A, Silver M, Zee, VDR, Li T, Witzenbichler B, Schatteman G, and Isner JM. 1997. Isolation of puttative progenitor endotherial cells for angiogenesis. Science 275(5302):964–967.PubMedCrossRefGoogle Scholar
  12. 12.
    Peichev M, Naiyer AJ, Pereira D, Zhu Z, Lane WJ, Williams M, Pz MC, Hicklin DJ, Witte L, Moore MA, and Rafii S. 2000. Expression of VEGFR-2 and AC 133 by circulating human CD34+ cells identifies a population of functional endothelial precursors. Blood 95(3):952–958.PubMedGoogle Scholar
  13. 13.
    Isner JM, Asahar T. 1999. Angiogenesis and vasculogenesis as therapeutic strategies for postnatal neovascularization. J Clin Invest 103(9): 1231–1236.PubMedCrossRefGoogle Scholar
  14. 14.
    Wineman J, Moore K, Lemischka I, and Muller-Sieburg C. 1995. Functional heterogeneity of the hematopoietic microenvironment: rare stromal elements maintain long-term repopulating stem cells. Blood 87(1):4082–4090.Google Scholar
  15. 15.
    Asahara T, Kalka C, and Isner JM. 2000. Stem cell therapy and gene transfer for regeneration. Gene Therapy 7(6):451–457.PubMedCrossRefGoogle Scholar
  16. 16.
    Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, and Marshak DR. 1999. Multilineage potential of adult human mesenchymal stem cells. Science 284(5411):143–147.PubMedCrossRefGoogle Scholar
  17. 17.
    Prockop D. 1997. Marrow stromal cells as stem cells for nonhematopoietic tissues. Science 276(5309):71–74.PubMedCrossRefGoogle Scholar
  18. 18.
    Schofield R. 1978. The relationship between the spleen colony-forming cell and the hematopoietic stem cell: a hypothesis. Blood Cells 4(1-2):7–25.PubMedGoogle Scholar
  19. 19.
    Rafii S. 2000. Circulating endothelial precursors: mystery, reality, and promise. J Clin Invest 105(1):17–19.PubMedCrossRefGoogle Scholar
  20. 20.
    Lin Y, Weisdorf DJ, Solovey A, and Hebbel RR 2000. Origins of circulating endothelial cells and endothelial outgrowth from blood. J Clin Invest 105(1):71–77.CrossRefGoogle Scholar
  21. 21.
    Papapetropoulos A, Garcia-Cardena G, Madri JA, and Sessa WC. 1997. Nitirc oxide protection contributes to the angiogenic properties of vascular endothelial growth factor in human endothelial cells. J Clin Invest 100(12):3131–3139.PubMedCrossRefGoogle Scholar
  22. 22.
    Partanen T, Makinen T, Arola J, Suda T, Weich HA, and Alitalo K. 1999. Endothelial growth factor receptors in human fetal heart. Circulation 100(6):583–586.PubMedCrossRefGoogle Scholar
  23. 23.
    Asahara T, Chen D, Takahahi T, Fujikawa K, Kearney M, Magner M, Yancopolous GD, and Isner JM. 1998. Tie2 receptor ligands, angiopoietin-1 and angiopoietin-2, modulate VEGF-induced postnatal neovascularization. Circ Res 83(3):233–240.PubMedCrossRefGoogle Scholar
  24. 24.
    Murohara T, Asahara T, Silver M, Bauters C, Masuda H, Kalka C, Kearney Chen D, Symes JF, Fishman MC, Huang P, Isner JM. 1998. Nitric oxide synthase modulates angiogenesis in response to tissue ischemia. J Clin Invest 101(11):2567–2578.CrossRefGoogle Scholar
  25. 25.
    Murohara T, Witzenbichler B, Spyridopoulos I, Asahara T, Ding B, Sullivan A, Losordo DW, and Isner JM. 1999. Role of endothelial nitric oxide synthase in endothelial cell migration. Aterioscler Thromb Vasc Biol 19(5):1156–1161.CrossRefGoogle Scholar
  26. 26.
    Namiki A. 1995. Hypoxia induces vascular endothelial growth factor in cultured human endothelial cells. J Biol Chem 270(52):31189–31195.PubMedCrossRefGoogle Scholar
  27. 27.
    Asahara T, Murohara T, Sullivan A, Silver M, van den Zee R, Li T, Witzenbichler B, Schatteman G, and Isner JM. 1997. Isolation of putative progenitor endothelial cells for angiogenesis. Science 275(5302):964–967.PubMedCrossRefGoogle Scholar
  28. 28.
    Braunwald E, Rutherford JD. 1986. Reversible ischemic left ventricular dysfunction: Evidence for the “hibernating myocardium”. J Am Coll Cardiol 8(6): 1467–1470.CrossRefGoogle Scholar
  29. 29.
    Banai S, Jaklitsch MT, Shou M, Lazarous DF, Scheinowitz M, Biro S, Epstein SE, and Unger EF. 1994. Angiogenic-induced enhancement of collateral blood flow to ischemic myocardium by vascular endothelial growth factor in dogs. Circulation 89(5):2183–2189.PubMedCrossRefGoogle Scholar
  30. 30.
    Unger EF, Banai S, Shou M, Lazarous DF, Jaklitsch MT, Scheinowitz M, Correa K, Kungbeil C, and Epstein SE. 1994. Basic fibroblast growth factor enhances myocardial collateral flow in a canine model. Am J Physiol 266:H1588–1595.PubMedGoogle Scholar
  31. 31.
    Losordo DW. 1998. Gene therapy for myocardial angiogenesis: initial clinical results with direct myocardial injection of phVEGF165 as sole therapy for myocardial ischemia. Circulation 98(25): 2800–2804.CrossRefGoogle Scholar
  32. 32.
    Li, R-K, Yau T, Mickle D, and Weisel, RD 2000. Cell therapy to repair broken hearts. Can J Cardiol 14:735–744.Google Scholar
  33. 33.
    Tomita S, Li R-K, Weisel RD, Mickle DAG, Kim E-J, Sakai T, and Jia Z-Q. 1999. Autologous transplantation of bone marrow cells improves damaged heart function. Circulation 100(19suppl S):II-247–11-256.CrossRefGoogle Scholar
  34. 34.
    Kobayashi T, Hamano K, Li TS, Katoh T, Kobayashi S, Matsuzaki M, and Esato K. 2000. Enhancement of angiogenesis by the implantation of self bone marrow cells in a rat ischemic heart model. J Surg Res 89(2): 189–195.PubMedCrossRefGoogle Scholar
  35. 35.
    Asahara T, Masuda H, Takahashi T, Kalka C, Pastore C, Silver M, Kearne M, Magner M, and Isner JM. 1999. Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circ Res 85(3):221–228.PubMedCrossRefGoogle Scholar
  36. 36.
    Reinlib L, Field L. 2000. Cell Transplantation as future therapy for cardiovascular disease?. Circulation 101(18):E182–187.PubMedCrossRefGoogle Scholar
  37. 37.
    Orlic D, Kajstura J, Chimenti S, Jakoniuk I, Anderson SM, Li B, Pickel J, McKay R, Nadal-Ginard B, Bodine DM, Len A, Anversa P. 2001. Bone marrow cells regenerate infarcted myocardium. Nature 410(6829):701–705.PubMedCrossRefGoogle Scholar
  38. 38.
    Chen J, Jones PA. 1990. Potentiation of MyoD1 activity by 5-aza-2’-deoxycytidine. Cell Growth Differ 1(8):383–392.PubMedGoogle Scholar
  39. 39.
    Scott-Burden T, Bogenmann E, and Jones PA. 1986. Effects of complex extracellular matrices on 5-azacytidine-induced myogenesis. Exp Cell Res 164(2):527–535.PubMedCrossRefGoogle Scholar
  40. 40.
    Wang JS, Shum-Tim D, Galipeau J, Chedrawy E, Eliopoulos N, and Chiu RC. 2000. Marrow stromal cells for cellular cardiomyoplasty: feasibility and potential clinical advantages. J Thorac Cardiovasc Surg 120(5):999–1005.PubMedCrossRefGoogle Scholar
  41. 41.
    Tomita S, Mickle DA, Weisel RD, Jia ZQ, Tumiati LC, Allidina Y, Liu P, and Li RK. 2001. Myogenesis and angiogenesis following autologous porcine bone marrow stromal cell transplantation improved heart function. J Thorac Cardiovasc Surg In press.Google Scholar
  42. 42.
    Mohle R, Bautz F, Rafii S, Moore MA, Brugger W, and Kanz L. 1999. Regulation of transendothelial migration of hematopoietic progenitor cells. Ann NY Acad Sci 872:176–185.PubMedCrossRefGoogle Scholar
  43. 43.
    Kocher AA, Schuster MD, Szabolcs MJ, Takuma S, Burkhoff D, Wang J, Homma S, Edwards NM, and Itescu S. 2001. Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function. Nat Med 7(4):430–436.PubMedCrossRefGoogle Scholar
  44. 44.
    Sussman M. 2001. Cardiovascular biology. Hearts and bones. Nature 410(6829):640–641.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • Shinji Tomita
    • 1
  • Ren-Ke Li Sam Parbhakar
    • 1
  • Osman Al-Radi
    • 1
  • Richard D. Weisel
    • 1
  • Donald A. G. Mickle
    • 1
  1. 1.Division of Cardiovascular Surgery, Toronto General Hospital, Department of Surgery, Department of Laboratory Medicine and PathobiologyUniversity of TorontoTorontoCanada

Personalised recommendations