Skip to main content

Structural Remodeling of Cardiac Myocytes in Hypertrophy and Progression to Failure

  • Chapter
Cardiac Remodeling and Failure

Part of the book series: Progress in Experimental Cardiology ((PREC,volume 5))

  • 126 Accesses

Abstract

Studies conducted in recent years have underscored the importance of cardiac structural alterations in the progression to failure. For instance, therapies that arrest or reverse structural abnormalities produce the most striking improvements in patient outcome. Cardiac myocytes comprise about 75% of the heart mass and provide mechanical force for contraction. Consequently, structural changes in these cells are likely to play a key role in heart failure. Many myocyte cytoskeletal alterations have been observed in heart failure. Experiments in transgenic mice suggest that such changes can cause heart failure. Importantly, viral infections have been linked to cytoskeletal alterations known to cause heart failure. Perhaps, the most consistent and important myocyte structural alteration in progression to heart failure is a change in the shape of cardiac myocytes. In heart failure of both ischemic and hypertensive etiologies, progressive chamber dilatation is due largely to myocyte lengthening from series addition of new sarcomeres. During this critical transition period, myocyte diameter does not change. It is encouraging to know that this maladaptive change in myocyte shape is potentially reversible. Isolated myocyte data from patients with heart failure on LVAD (left ventricular assist device) support and animals genetically predisposed to heart failure and treated with ACE inhibitors or AT1 receptor antagonists have demonstrated significant reversal of myocyte shape alterations. As we learn more about signaling abnormalities affecting myocyte structure in heart failure, important new therapies will undoubtedly be developed in the near future as a result of this information.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pfeffer MA, Braunwald E, Moye LA, Basta L, on behalf of the SAVE investigators. 1992. Effect of Captopril on mortality and morbidity in patients with left ventricular dysfunction after myocardial infarction. N Engl J Med 327:669–677.

    Article  PubMed  CAS  Google Scholar 

  2. Packer M, Coats AJ, Fowler MB, Katus HA, Krum H, for the Carvedilol Prospective Randomized Cumulative Survival Study Group. 2001. Effect of Carvedilol on survival in severe chronic heart failure. N Engl J Med 344:1651–1658.

    Article  PubMed  CAS  Google Scholar 

  3. Grossman W, Jones D, McLaurin LP. 1975. Wall stress and patterns of hypertrophy in the human left ventricle. J Clin Invest 56:56–64.

    Article  PubMed  CAS  Google Scholar 

  4. Olivetti G, Abbi R, Quaini F, Kajstura J, Cheng W, Nitahara JA, Quaini E, Di Loreto C, Beltrami CA, Krajewski S, Reed JC, Anversa P. 1997. Apoptosis in the failing human heart. N Engl J Med 336:1131–1141.

    Article  PubMed  CAS  Google Scholar 

  5. Beltrami AP, Urbanek K, Kajstura J, Yan SM, Finato N, Bussani R, Nadal-Ginard B, Silvestri F, Leri A, Beltrami A, Anversa P. 2001. Evidence that human cardiac myocytes divide after myocardial infarction. N Engl J Med 344:1750–1757.

    Article  PubMed  CAS  Google Scholar 

  6. Kajstura J, Leri A, Finato N, Di Loreto C, Beltrami CA, Anversa P. 1998. Myocyte proliferation in end-stage cardiac failure in humans. Proc Natl Acad Sci 95:8801–8805.

    Article  PubMed  CAS  Google Scholar 

  7. Gerdes AM, Moore JA, Hines JM, Kirkland PA, Bishop SP. 1986. Regional differences in myocyte size in normal rat heart. Anat Rec 215:420–426.

    Article  PubMed  CAS  Google Scholar 

  8. Campbell SE, Gerdes AM, Smith TD. 1987. Comparison of regional differences in cardiac myocyte dimensions in rats, hamsters, and guinea pigs. Anat Rec 219:53–59.

    Article  PubMed  CAS  Google Scholar 

  9. Gerdes AM, Kellerman SE, Moore JA, Clark LC, Reaves PY, Malec KB, Muffly KE, McKeown PP, Schocken DD. 1992. Structural remodeling of cardiac myocytes from patients with chronic ischemic heart disease. Circulation 86:426–430.

    Article  PubMed  CAS  Google Scholar 

  10. Zierhut W, Zimmer HG, Gerdes AM. 1991. Effects of angiotensin-converting enzyme inhibition on pressure-induced left ventricular hypertrophy in rats. Circ Res 69:609–617.

    Article  PubMed  CAS  Google Scholar 

  11. Werchan PM, Gregory TJ, Summer WR, Gerdes AM, McDonough KH. 1989. Right ventricular performance following monocrotaline induced pulmonary hypertension. Am J Physiol 256: H1328–H1336.

    PubMed  CAS  Google Scholar 

  12. Bai S, Campbell SE, Moore JA, Morales MC, Gerdes AM. 1990. Influence of age, growth, and sex on cardiac myocyte size and number in rats. Anat Rec 226:207–212.

    Article  PubMed  CAS  Google Scholar 

  13. Gerdes AM, Moore JA, Hines JM. 1987. Regional changes in myocyte size and number in propra-nolol-treated hyperthyroid rats. Lab Invest 57:708–713.

    PubMed  CAS  Google Scholar 

  14. Liu Z, Hilbelink DR, Gerdes AM. 1991. Regional changes in hemodynamics and cardiac myocyte size in rats with aortocaval fistulas. II. Long-term effects. Circ Res 69:59–65.

    Article  PubMed  CAS  Google Scholar 

  15. Gerdes AM, Kellerman SE, Schocken DD. 1995. Implications of cardiomyocyte remodeling in heart dysfunction. In: The Failing Heart. Ed. Dhalla NS, Beamish RE, Takeda N, and Nagano N, 197–205. New York: Raven Press.

    Google Scholar 

  16. Zafeiridis A, Jeevanandam V, Houser SR, Margulies KB. 1998. Regression of cellular hypertrophy after left ventricular assist device support. Circulation 98:656–662.

    Article  PubMed  CAS  Google Scholar 

  17. Zimmer HG, Gerdes AM, Lortet S, Mall G. 1990. Changes in heart function and cardiac cell size in rats with chronic myocardial infarctions. J Mol Cell Cardiol 22:1231–1243.

    Article  PubMed  CAS  Google Scholar 

  18. Kramer CM, Rogers WJ, Park CS, Scibel PS, Schaffer A, Theobald TM, Reichek N, Onodera T, Gerdes AM. 1998. Regional myocyte hypertrophy parallels regional myocardial dysfunction during post-infarction remodeling. J Mol Cell Cardiol 30:1773–1778.

    Article  PubMed  CAS  Google Scholar 

  19. Gerdes AM. 1995. Chronic ischemic heart disease. In: Wound healing responses in cardiovascular disease. Ed. KT Weber, 61–66. Mt. Kisco, NY: Futura Pub. Co.

    Google Scholar 

  20. Onodera T, Tamura T, Said S, McCune SA, Gerdes AM. 1998. Maladaptive remodeling of cardiac myocyte shape begins long before failure in hypertension. Hypertension 32:753–757.

    Article  PubMed  CAS  Google Scholar 

  21. Page E, McCallister LP. 1973. Quantitative electron microscopic description of heart muscle cells. Application to normal, hypertrophied, and thyroxin-stimulated hearts. Am J Cardiol 1:172–181.

    Article  Google Scholar 

  22. Tamura T, Said S, Gerdes AM. 1999. Gender-related differences in myocyte remodeling in progression to heart failure. Hypertension 33:676–680.

    Article  PubMed  CAS  Google Scholar 

  23. Gerdes AM, Clark LC, Capasso JM. 1995. Regression of cardiac hypertrophy after closing an aortocaval fistula in rats. Am J Physiol 268:H2345–2351.

    PubMed  CAS  Google Scholar 

  24. Tamura T, Said S, Harris J, Lu W, Gerdes AM. 2000. Reverse remodeling of cardiac myocyte hypertrophy and failure by targeting the renin-angiotensin system. Circulation 102:245–259.

    Article  Google Scholar 

  25. Weber KT. 1989. Cardiac interstitium in health and disease: The fibrillar collagen network. J Am Coll Cardiol 13:1637–1652.

    Article  PubMed  CAS  Google Scholar 

  26. Linzbach AJ. 1960. Heart failure from the point of view of quantitative anatomy. Am J Cardiol 5:370–382.

    Article  PubMed  CAS  Google Scholar 

  27. Yamamoto S, James TN, Sawada K, Okabe M, Kawamura K. 1996. Generation of new intercellular junctions between cardiocytes. A possible mechanism compensating for mechanical overload in the hypertrophied human adult myocardium. Circ Res 78:362–370.

    Article  PubMed  CAS  Google Scholar 

  28. Tamura T, Onodera T, Said S, Gerdes AM. 1998. Correlation of myocyte lengthening to chamber dilation in the Spontaneously Hypertensive Heart Failure (SHHF) rat. J Mol Cell Cardiol 30:2175–2181.

    Article  PubMed  CAS  Google Scholar 

  29. Streeter DD, Hanna WT. 1973. Engineering mechanics for successive states in canine left ventricular myocardium. II. Fiber angle and sarcomere length. Circ Res 33:656–664.

    Article  PubMed  Google Scholar 

  30. Gerdes AM, Kellerman SE, Malec KB, Schocken DD. 1994. Transverse shape characteristics of cardiac myocytes from rats and humans. Cardioscience 5:31–36.

    PubMed  CAS  Google Scholar 

  31. Torrent-Guasp F, Buckberg GD, Clemente C, Cox JL, Coghlan HC, Gharib M. 2001. The structure and function of the helical heart and its buttress wrapping. I. The normal macroscopic structure of the heart. Seminars in Thoracic and Cardiovascular Surgery 13:301–319.

    PubMed  CAS  Google Scholar 

  32. Geiger B, Karsenti E. 1997. Cytoskeleton. Curr Opin Cell Biol 9:1–3.

    Article  PubMed  CAS  Google Scholar 

  33. Geiger B, Bershadsky A. 2001. Assembly and mechanosensory function of focal contacts. Curr Opin Cell Biol 13:584–592.

    Article  PubMed  CAS  Google Scholar 

  34. D’Adamo P, Fassone L, Gedeon A, Janssen EA, Bione S, Bolhuis PA, Barth PG, Wilson M, Haan E, Orstavik KH, Patton MA, Green AJ, Zammarchi E, Donati MA, Toniolo D. 1997. The X-linked gene G4.5 is responsible for different infantile dilated cardiomyopathies. Am J Hum Genet 61:862–867.

    Article  CAS  Google Scholar 

  35. Fong PY, Turner PR, Denetclaw WF, Steinhardt RA. 1990. Increased activity of calcium leak channels in myotubes of Duchenne human and mdx mouse origin. Science 250:673–676.

    Article  PubMed  CAS  Google Scholar 

  36. Kamisago M, Sharma SD, DePalma SR, Solomon S, Sharma P, McDonough B, Smoot L, Mullen MP, Woolf PK, Wigle ED, Seidman JG, Scidman CE. 2000. Mutations in sarcomere protein genes as a cause of dilated cardiomyopathy. N Engl J Med 343:1688–1696.

    Article  PubMed  CAS  Google Scholar 

  37. Li D, Czernuszewicz GZ, Gonzalez O, Tapscott T, Karibe A, Durand JB, Brugada R, Hill R, Gregoritch JM, Anderson JL, Quinones M, Bachinski LL, Roberts R. 2001. Novel cardiac troponin T mutation as a cause of familial dilated cardiomyopathy. Circulation 104:2188–2193.

    Article  PubMed  CAS  Google Scholar 

  38. Li D, Tapscoft T, Gonzalez O, Burch PE, Quinones MA, Zoghbi WA, Hill R, Bachinski LL, Mann DL, Roberts R. 1999. Desmin mutation responsible for idiopathic dilated cardiomyopathy. Circulation 100:461–464.

    Article  PubMed  CAS  Google Scholar 

  39. Norgett EE, Hatsell SJ, Carvajal-Huerta L, Cabezas JC, Common J, Purkis PE, Whittock N, Leigh IM, Stevens HP, Kelsell DP. 2000. Recessive mutation in desmoplakin disrupts desmoplakin-intermediate filament interactions and causes dilated cardiomyopathy, woolly hair and keratoderma. Hum Mol Genet 9:2761–2766.

    Article  PubMed  CAS  Google Scholar 

  40. Olson TM, Michels W, Thibodeau SN, Tai YS, Keating MT. 1998. Actin mutations in dilated cardiomyopathy, a heritable form of heart failure. Science 280:750–752.

    Article  PubMed  CAS  Google Scholar 

  41. Towbin JA, Bowles NE. 2000. Genetic abnormalities responsible for dilated cardiomyopathy. Curr Cardiol Rep 2:475–480.

    Article  PubMed  CAS  Google Scholar 

  42. Tsubata S, Bowles KR, Vatta M, Zintz C, Titus J, Muhonen L, Bowles NE, Towbin JA. 2000. Mutations in the human delta-sarcoglycan gene in familial and sporadic dilated cardiomyopathy. J Clin Invest 106:655–662.

    Article  PubMed  CAS  Google Scholar 

  43. Dalakas MC, Park KY, Semino-Mora C, Lee HS, Sivakumar K, Goldfarb LG. 2000. Desmin myopathy, a skeletal myopathy with cardiomyopathy caused by mutations in the desmin gene. N Engl J Med 342:770–780.

    Article  PubMed  CAS  Google Scholar 

  44. Vicart P, Caron A, Guicheney P, Li Z, Prevost MC, Faure A, Chateau D, Chapon F, Tome F, Dupret JM, Paulin D, Fardeau M. 1998. A missense mutation in the alphaB-crystallin chaperone gene causes a desmin-related myopathy. Nat Genet 20:92–95.

    Article  PubMed  CAS  Google Scholar 

  45. Arber S, Hunter JJ, Ross J, Jr., Hongo M, Sansig G, Borg J, Perriard JC, Chien KR, Caroni P. 1997. MLP-deficient mice exhibit a disruption of cardiac cytoarchitectural organization, dilated cardiomyopathy, and heart failure. Cell 88:393–403.

    Article  PubMed  CAS  Google Scholar 

  46. Milner DJ, Taffet GE, Wang X, Pham T, Tamura T, Hartley C, Gerdes AM, Capetanaki Y. 1999. The absence of desmin leads to cardiomyocyte hypertrophy and cardiac dilation with compromised systolic function. J Mol Cell Cardiol 31:2063–2076.

    Article  PubMed  CAS  Google Scholar 

  47. Sullivan T, Escalante-Alcalde D, Bhatt H, Anver M, Bhat N, Nagashima K, Stewart CL, Burke B. 1999. Loss of A-type lamin expression compromises nuclear envelope integrity leading to muscular dystrophy. J Cell Biol 147:913–920.

    Article  PubMed  CAS  Google Scholar 

  48. Badorff C, Lee GH, Lamphear BJ, Martone ME, Campbell KP, Rhoads RE, Knowlton KU. 1999. Enteroviral protease 2A cleaves dystrophin: evidence of cytoskeletal disruption in an acquired cardiomyopathy. Nat Med 5:320–326.

    Article  PubMed  CAS  Google Scholar 

  49. Lee GH, Badorff C, Knowlton KU. 2000. Dissociation of sarcoglycans and the dystrophin carboxyl terminus from the sarcolemma in enteroviral cardiomyopathy. Circ Res 87:489–495.

    Article  PubMed  CAS  Google Scholar 

  50. Wang X, Osinska H, Dorn GW, 2nd, Nieman M, Lorenz JN, Gerdes AM, Witt S, Kimball T, Gulick J, Robbins J. 2001. Mouse model of desmin-related cardiomyopathy. Circulation 103:2402–2407.

    Article  PubMed  CAS  Google Scholar 

  51. Tsutsui H, Ishihara K, Cooper G 4th. 1993. Cytoskeletal role in the contractile dysfunction of hypertrophied myocardium. Science 260:682–687.

    Article  PubMed  CAS  Google Scholar 

  52. Tagawa H, Koide M, Sato H, Zile MR, Carabello BA, Cooper G 4th. 1998. Cytoskeletal role in the transition from compensated to decompensated hypertrophy during adult canine left ventricular pressure overloading. Circ Res 82:751–761.

    Article  PubMed  CAS  Google Scholar 

  53. Yang J, Moravec CS, Sussman MA, DiPaola NR, Fu D, Hawthorn L, Mitchell CA, Young JB, Francis GS, McCarthy PM, Bond M. 2000. Decreased SLIM1 expression and increased gelsolin expression in failing human hearts measured by high-density oligonucleotide arrays. Circulation 102:3046–3052.

    Article  PubMed  CAS  Google Scholar 

  54. Zolk O, Caroni P, Böhm M. 2000. Decreased expression of the cardiac LIM domain protein MLP in chronic human heart failure. Circulation 101:2674–2677.

    Article  PubMed  CAS  Google Scholar 

  55. Heling A, Zimmermann R, Kostin S, Maeno Y, Hein S, Devaux B, Bauer E, Klovekorn WP, Schlepper M, Schaper W, Schaper J. 2000. Increased expression of cytoskeletal, linkage, and extracellular proteins in failing human myocardium. Circ Res 86:846–853.

    Article  PubMed  CAS  Google Scholar 

  56. Wang X, Li F, Campbell SE, Gerdes AM. 1999. Chronic pressure overload cardiac hypertrophy and failure in guinea pigs: II. Cytoskeletal remodeling. J Mol Cell Cardiol 31:319–331.

    Article  PubMed  CAS  Google Scholar 

  57. Wang X, Osinska H, Klevitsky R, Gerdes AM, Nieman M, Lorenz J, Hewett T, Robbins J. 2001. Expression of R120G-alphaB-crystallin causes aberrant desmin and alphaB-crystallin aggregation and cardiomyopathy in mice. Circ Res 89:84–91.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Martin Gerdes PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Gerdes, A.M., Wang, X. (2003). Structural Remodeling of Cardiac Myocytes in Hypertrophy and Progression to Failure. In: Singal, P.K., Dixon, I.M.C., Kirshenbaum, L.A., Dhalla, N.S. (eds) Cardiac Remodeling and Failure. Progress in Experimental Cardiology, vol 5. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-9262-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-9262-8_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4864-1

  • Online ISBN: 978-1-4419-9262-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics