Skip to main content

Roles of Calreticulin and Calnexin in Myeloperoxidase Synthesis

  • Chapter
Calreticulin

Part of the book series: Molecular Biology Intelligence Unit ((MBIU))

  • 219 Accesses

Abstract

Polymorphonuclear leukocytes (PMNs) represent the essential cellular component of acute inflammation. As such, PMNs mediate a wide array of functions critical for effective antimicrobial activity and integral for noninfectious proinflammatory events. PMNs contribute to normal host defense using cellular responses that include reactive oxygen species, an array of granule enzymes, and many directly cytotoxic antimicrobial proteins. The potency of the oxygen-dependent system is amplified by the action of myeloperoxidase (MPO), a glycosylated hemeprotein located in the PMN azurophilic granule. Under normal circumstances, MPO synthesis is restricted to the promyelocyte stage of myeloid development in the bone marrow. The molecular chaperones calreticulin, calnexin, and ERp57 each interact with normal MPO precursors during their biosynthesis in the ER. The mechanisms for these associations and the basis for their selectivity are not known. Not only do these chaperones participate in normal MPO biosynthesis, but they also contribute to “quality control”, demonstrated by their prolonged association with mutant species of MPO. However, not all MPO mutants are handled in an identical fashion, indicating that the chaperones have the capacity to be selective in their interactions. Understanding the structural basis for these interactions, both with normal and aberrant MPO species, and the functional implications of these apparently selective associations should provide important insights into the role of molecular chaperones in normal protein folding and quality control in the ER.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Williams DB. Calnexin: a molecular chaperone with a taste for carbohydrate. Biochem Cell Biol 1995; 73:123–132.

    Article  PubMed  CAS  Google Scholar 

  2. Helenius A, Trombetta ES, Hebert DN et al. Calnexin, calreticulin and the folding of glycoproteins. Trends Cell Biol 1997; 7:193–200.

    Article  CAS  Google Scholar 

  3. Michalak M, Milner RE, Burns K et al. Calreticulin. Biochem J 1992; 285:681–692.

    PubMed  CAS  Google Scholar 

  4. Zapun A, Darby NJ, Tessier DC et al. Enhanced catalysis of ribonuclease B folding by the interaction of calnexin or calreticulin with ERp57. J Biol Chem 1998; 273:6009–6012.

    Article  PubMed  CAS  Google Scholar 

  5. Molinari M, Helenius A. Chaperone selection during glycoprotein translocation into the endoplasmic reticulum. Science 2000; 288:331–333.

    Article  PubMed  CAS  Google Scholar 

  6. Nauseef WM. Contributions of myeloperoxidase to proinflammatory events: more than an antimicrobial system. Intl J Hematol 2001; 74:125–133.

    Article  CAS  Google Scholar 

  7. The Peroxidase Multigene Family of Enzymes: biochemical basis and clinical applications. First ed. Berlin: Springer-Verlag, 2000.

    Google Scholar 

  8. Nauseef WM, Clark RA. Granulocytic phagocytes. In: Mandell GL, Bennett JE, Dolin R, eds. Principles and Practice of Infectious Diseases. Philadelphia: Churchill-Livingstone, 2000:89–111.

    Google Scholar 

  9. Klebanoff SJ. Myeloperoxidase. Proc Assoc Am Physicians 1999; 111(5):383–389.

    PubMed  CAS  Google Scholar 

  10. Winterbourn CC, Vissers M, Kettle AJ. Myeloperoxidase. Curr Opin Hematol 2000; 7:53–58.

    Article  PubMed  CAS  Google Scholar 

  11. Hampton MB, Kettle AJ, Winterbourn CC. Inside the neutrophil phagosome: oxidants, myeloperoxidase, and bacterial killing. Blood 1998; 92:3007–3017.

    PubMed  CAS  Google Scholar 

  12. Rosen H, Michel BR, VanDevanter DR et al. Differential effects of myeloperoxidase-derived oxidants on Escherichia coli DNA replication. Infect Immun 1998; 66:2655–2659.

    PubMed  CAS  Google Scholar 

  13. Dinauer MC, Nauseef WM, Newburger PE. Inherited disorders of phagocyte killing. In: Scriver CR, Beaudet AL, Valle D et al, eds. The Metabolic and Molecular Bases of Inherited Diseases. New York: McGraw-Hill Companies, 2001:4857–4887.

    Google Scholar 

  14. Andrews PC, Parnes C, Krinsky NI. Comparison of myeloperoxidase and hemi-myeloperoxidase with respect to catalysis, regulation, and bactericidal activity. Arch Biochem Biophys 1984; 228:439–442.

    Article  PubMed  CAS  Google Scholar 

  15. Furtmuller PG, Jantschko W, Regelsberger G et al. A transient kinetic study on the reactivity of recombinant unprocessed monomeric myeloperoxidase. FEBS Lett 2001; 503:147–150.

    Article  PubMed  CAS  Google Scholar 

  16. Zeng J, Fenna RE. X-ray crystal structure of canine myeloperoxidase at 3 Å resolution. J Mol Biol 1992; 226:185–207.

    Article  PubMed  CAS  Google Scholar 

  17. Blair-Johnson M, Fiedler T, Fenna R. Human myeloperoxidase: Structure of a cyanide complex and its interaction with bromide and thiocyanate substrates at 1.9 Å resolution. Biochemistry 2001; 40(46):13990–13997.

    Article  PubMed  CAS  Google Scholar 

  18. Gullberg U, Bengtsson N, Biilow E et al. Processing and targeting of granule proteins in human neutrophils. J Immunol Meth 1999; 232:201–210.

    Article  CAS  Google Scholar 

  19. Gullberg U, Andersson E, Garwicz D et al. Biosynthesis, processing and sorting of neutrophil proteins: insight into neutrophil granule development. Eur J Haematol 1997; 58:137–153.

    Article  PubMed  CAS  Google Scholar 

  20. Akin DT, Kinkade JM Jr. Evidence for the involvement of an acidic compartment in the processing of myeloperoxidase in human promyelocytic leukemia HL-60 cells. Arch Biochem Biophys 1987; 255:428–436.

    Article  PubMed  CAS  Google Scholar 

  21. Akin DT, Kinkade JM Jr. Processing of a newly identified intermediate of human myeloperoxidase in isolared granules occurs at neutral pH. J Biol Chem 1986; 261:8370–8375.

    PubMed  CAS  Google Scholar 

  22. Hashinaka K, Nishio C, Hur SJ et al. Multiple species of myeloperoxidase messenger RNAs produced by alternative splicing and differential polyadenylation. Biochemistry 1988; 27:5906–5914.

    Article  PubMed  CAS  Google Scholar 

  23. Taylor KL, Guzman GS, Burgess CA et al. Assembly of dimeric myeloperoxidase during posttranslational maturation in human leukemic HL-60 cells. Biochemistry 1990; 29:1533–1539.

    Article  PubMed  CAS  Google Scholar 

  24. Nauseef WM. Posttranslational processing of a human myeloid lysosomal protein, myeloperoxidase. Blood 1987; 70:1143–1150.

    PubMed  CAS  Google Scholar 

  25. Yamada M, Hur S-J, Toda H. Isolation and characterization of extracellular myeloperoxidase precursor in HL-60 cell cultures. Biochem Biophys Res Commun 1990; 166:852–859.

    Article  PubMed  CAS  Google Scholar 

  26. Hur SJ, Toda H, Yamada M. Isolation and characterization of an unprocessed extracellular myeloperoxidase in HL-60 cell cultures. J Biol Chem 1989; 264:8542–8548.

    PubMed  CAS  Google Scholar 

  27. Andersson E, Hellman L, Gullberg U et al. The role of the propeptide for processing and sorting of human myeloperoxidase. J Biol Chem 1998; 273(8):4747–4753.

    Article  PubMed  CAS  Google Scholar 

  28. Biilow E, Nauseef WM, Goedken M et al. Sorting for storage in myeloid cells of non-myeloid proteins and chimeras wirh the propeptide of myeloperoxidase precursor. J Leukoc Biol 2002; in press.

    Google Scholar 

  29. Daiyasu H, Toh H. Molecular evolution of the myeloperoxidase family. J Mol Evol 2000; 51:433–445.

    PubMed  CAS  Google Scholar 

  30. Kimura S, Ikeda-Saito M. Human myeloperoxidase and thyroid peroxidase, two enzymes with separate and distinct physiological functions, are evolutionarily related members of the same gene family. Proteins 1988; 3:113–120.

    Article  PubMed  CAS  Google Scholar 

  31. Dunford HB. Herne Peroxidases. First ed. New York: Wiley-VCH, 1999.

    Google Scholar 

  32. Kettle AJ, Winterbourn CC. Myeloperoxidase: a key regularer of neutrophil oxidant production. Redox Report 1997; 3:3–15.

    CAS  Google Scholar 

  33. Harrison JE, Schultz J. Studies on the chlorinating activity of myeloperoxidase. J Biol Chem 1976; 251:1371–1374.

    PubMed  CAS  Google Scholar 

  34. Weiss SJ, Test ST, Eckmann CM et al. Brominating oxidants generated by human eosinophils. Science 1986; 234:200–202.

    Article  PubMed  CAS  Google Scholar 

  35. Kooter IM, Moguilevsky N, Bollen A et al. Characterization of the Asp94 and Glu242 mutants in myeloperoxidase, the residues linking the heme group via ester bonds. Eur J Biochem 1999; 264(1):211–217.

    Article  PubMed  CAS  Google Scholar 

  36. Kooter IM, Koehler BP, Moguilevsky N et al. The Met243 sulfonium ion linkage is responsible for the anomalous magnetic circular dichroism and optical spectral properties of myeloperoxidase. JBIC 1999; 4:688–691.

    Article  Google Scholar 

  37. Kooter IM, Moguilevsky N, Bollen A et al. The sulfonium ion linkage in myeloperoxidase. J Biol Chem 1999; 274:26794–26802.

    Article  PubMed  CAS  Google Scholar 

  38. Nauseef WM, McCormick SJ, Clark RA. Calreticulin functions as a molecular chaperone in the biosynthesis of myeloperoxidase. J Biol Chem 1995; 270:4741–4747.

    Article  PubMed  CAS  Google Scholar 

  39. Nauseef WM, McCormick SJ, Goedken M. Coordinated participation of calreticulin and calnexin in the biosynthesis of myeloperoxidase. J Biol Chem 1998; 273:7107–7111.

    Article  PubMed  CAS  Google Scholar 

  40. Nauseef WM, McCormick S, Goedken M. Impact of missense mutations on biosynthesis of myeloperoxidase. Redox Report 2000; 5:197–206.

    Article  PubMed  CAS  Google Scholar 

  41. Benoist F, Grand-Perret T. Co-translational degradation of apolipoprotein B100 by the proteasome is prevented by microsomal triglycéride transfer protein. J Biol Chem 1997; 272(33):20435–20442.

    Article  PubMed  CAS  Google Scholar 

  42. DeLeo FR, Goedken M, McCormick SJ et al. A novel form of hereditary myeloperoxidase deficiency linked to endoplasmic reticulum/proteasome degradation. J Clin Invest 1998; 101:2900–2909.

    Article  PubMed  CAS  Google Scholar 

  43. DeLeo FR, Burritt JB, Yu L et al. Processing and maruration of flavocytochrome b558 includes incorporarion of heme as a prerequisite for heterodimer assembly. J Biol Chem 2000; 275:13986–13993.

    Article  PubMed  CAS  Google Scholar 

  44. High S, Lccomte FJL, Russell SJ et al. Glycoprotein folding in the endoplasmic reticulum: a tale of three chaperones? FEBS Lett 2000; 476(1-2):38–41.

    Article  PubMed  CAS  Google Scholar 

  45. Peterson JR, Ora A, Van PN et al. Transient, lectin-like association of calreticulin with folding intermediates of cellular and viral glycoproteins. Mol Biol Cell 1995; 6:1173–1184.

    PubMed  CAS  Google Scholar 

  46. Wada I, Imai S, Kai M et al. Chaperone function of calreticulin when expressed in the endoplasmic reticulum as the membrane-anchored and soluble forms. J Biol Chem 1995; 270(35):20298–20304.

    Article  PubMed  CAS  Google Scholar 

  47. Van Leeuwen JEM, Kearse KP. Calnexin associates exclusively with individual CD3d and T cell antigen receptor (TCR) a proteins containing incompletely trimmed glycans that are not assembled into multisubunit TCR complexes. J Biol Chem 1996; 271:9660–9665.

    Article  Google Scholar 

  48. Kornfeld S, Mellman I. The biogenesis of lysosomes. Annu Rev Cell Biol 1989; 5:483–525.

    Article  PubMed  CAS  Google Scholar 

  49. Sousa M, Parodi AJ. The molecular basis for the recognition of misfolded glycoproteins by the UDP-Glc:glycoprotein glucosyltransferase. EMBO J 1995; 14:4196–4203.

    PubMed  CAS  Google Scholar 

  50. Svaerke C, Houen G. Chaperone properties of calreticulin. Acta Chem Scand 1998; 52:942–949.

    Article  PubMed  CAS  Google Scholar 

  51. Ware FE, Vassilakos A, Peterson PA et al. The molecular chaperone calnexin binds Glc1Man9GlcNAc2 oligosaccharide as an initial step in recognizing unfolded glycoproteins. J Biol Chem 1995; 270(9):4697–4704.

    Article  PubMed  CAS  Google Scholar 

  52. Zhang Q, Tector M, Salter RD. Calnexin recognizes carbohydrate and protein determinants of class I major histocompatibility complex molecules. J Biol Chem 1995; 270(8):3944–3948.

    Article  PubMed  CAS  Google Scholar 

  53. Arunachalam B, Cresswell P. Molecular requirements for the interaction of class II major histocompatibility complex molecules and invariant chain with calnexin. J Biol Chem 1995; 270(6):2784–2790.

    Article  PubMed  CAS  Google Scholar 

  54. Rajagopalan S, Xu Y, Brenner MB. Retention of unassembled components of integral membrane proteins by calnexin. Science 1994; 263:387–390.

    Article  PubMed  CAS  Google Scholar 

  55. Carreno BM, Schreiber KL, McKean DJ et al. Aglycosylated and phosphatidylinositol-anchored MHC class I molecules are associated with calnexin. J Immunol 1995; 154:5173–5180.

    PubMed  CAS  Google Scholar 

  56. Kim PS, Arvan P. Calnexin and BiP act as sequential molecular chaperones during thyroglobulin folding in the endoplasmic reticulum. J Cell Biol 1995; 128:29–38.

    Article  PubMed  CAS  Google Scholar 

  57. Basu S, Srivastava PK. Calreticulin, a peptide-binding chaperone of the endoplasmic reticulum, elicits tumor-and peptide-specific immunity. J Exp Med 1999; 189(5):797–802.

    Article  PubMed  CAS  Google Scholar 

  58. Ihara Y, Cohen-Doyle MF, Saito Y et al. Calnexin discriminates between protein conformational states and functions as a molecular chaperone in vitro. Mol Cell 1999; 4:331–341.

    Article  PubMed  CAS  Google Scholar 

  59. Saito Y, Ihara Y, Leach MR et al. Calreticulin functions in vitro as a molecular chaperone for both glycosylated and non-glycosylated proteins. EMBO J 1999; 18:6718–6729.

    Article  PubMed  CAS  Google Scholar 

  60. Danilczyk UG, Williams DB. The lectin chaperone calnexin utilizes polypeptide-based interactions to associate with many of its substrates in vivo. J Biol Chem 2001; 276(27):25532–25540.

    Article  PubMed  CAS  Google Scholar 

  61. Seo HG, Fujii J, Soejima H et al. Herne requirement for production of active endothelial nitric oxide synthase in baculovirus-infected insect cells. Biochem Biophys Res Commun 1995; 208(1):10–18.

    Article  PubMed  CAS  Google Scholar 

  62. Nakamura K, Zuppini A, Arnaudeau S et al. Functional specialization of calreticulin domains. J Cell Biol 2001; 154(5):961–972.

    Article  PubMed  CAS  Google Scholar 

  63. Takeuchi KH. Biochemical and immunological identification of human neutrophil elastase on nitrocellulose membranes. Stain Technol 1991; 66:324–329.

    CAS  Google Scholar 

  64. Hayes SA, Dice JF. Roles of molecular chaperones in protein degradation. J Cell Biol 1996; 132:255–258.

    Article  PubMed  CAS  Google Scholar 

  65. Kuznetsov G, Nigam SK. Folding of secretory and membrane proteins. New Engl J Med 1998; 339:1688–1695.

    Article  PubMed  CAS  Google Scholar 

  66. Brodsky JL, McCracken AA. ER-associated and proteasome-mediated protein degradation: how two topologically restricted events came together. Trends Cell Biol 1997; 7:151–156.

    Article  PubMed  CAS  Google Scholar 

  67. Nauseef WM, Brigham S, Cogley M. Hereditary myeloperoxidase deficiency due to a missense mutation of arginine 569 to tryptophan. J Biol Chem 1994; 269:1212–1216.

    PubMed  CAS  Google Scholar 

  68. Romano M, Dri P, Dadalt L et al. Biochemical and molecular characterization of hereditary myeloperoxidase deficiency. Blood 1997; 90:4126–4134.

    PubMed  CAS  Google Scholar 

  69. Nauseef WM, Petrides PE. Peroxidases and human disease: a meeting of minds. Molecular Medicine Today 1999; 5:58–60.

    Article  PubMed  CAS  Google Scholar 

  70. Nauseef WM, Cogley M, McCormick S. Effect of the R569W missense mutation on the biosynthesis of myeloperoxidase. J Biol Chem 1996; 271(16):9546–9549.

    Article  PubMed  CAS  Google Scholar 

  71. Nauseef WM, Cogley M, Bock S et al. Pattern of inheritance in hereditary myeloperoxidase deficiency associated with the R569W missense mutation. J Leukoc Biol 1998; 63:264–269.

    PubMed  CAS  Google Scholar 

  72. Cabrai CM, Liu Y, Sifers RN. Dissecting glycoprotein quality control in the secretory pathway. Trends Biochem Sci 2001; 26:619–624.

    Article  Google Scholar 

  73. Van Dalen CJ, Whitehouse MW, Winterbourn CC et al. Thiocyanatc and chloride as competing substrates for myeloperoxidase. Biochem J 1997; 327:487–492.

    Google Scholar 

  74. Lee DH, Goldberg AL. Proteasome inhibitors: valuable new tools for cell biologists. Trends Cell Biol 1998; 8:397–403.

    Article  PubMed  CAS  Google Scholar 

  75. Jensen TJ, Loo MA, Pind S et al. Multiple proteolytic systems, including the proteasome, contribute to CFTR processing. Cell 1995; 83:129–135.

    Article  PubMed  CAS  Google Scholar 

  76. Fenteany G, Schreiber SL. Lactacystin, proteasome function, and cell fate. J Biol Chem 1998; 273:8545–8548.

    Article  PubMed  CAS  Google Scholar 

  77. Chevet E, Wong HN, Gerber D et al. Phosphorylation by CK2 and MAPK enhances calnexin association with ribosomes. EMBO J 1999; 18:3655–3666.

    Article  PubMed  CAS  Google Scholar 

  78. Nauseef WM, McCormick S, Yi H. Roles of heme insertion and the mannose-6-phosphate receptor in processing of the human myeloid lysosomal enzyme, myeloperoxidase. Blood 1992; 80:2622–2633.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Nauseef, W.M. (2003). Roles of Calreticulin and Calnexin in Myeloperoxidase Synthesis. In: Eggleton, P., Michalak, M. (eds) Calreticulin. Molecular Biology Intelligence Unit. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-9258-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-9258-1_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4862-7

  • Online ISBN: 978-1-4419-9258-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics