Advertisement

Peptide Toxin Inhibition of Voltage Gated Calcium Channels

Selectivity and Mechanisms
  • Stefan I. McDonough

Abstract

Peptide toxins from animal venom are some of the most potent and selective antagonists currentlyavailable for voltage-gatedcalciumchannels, especially of the Cav2.lα1, 2.2α1, and 2.3α1 families (p-type, N-type, and R-type channels). Such toxins are commonly used to investigate the involvement of different channel subtypes in calcium-mediated signaling and may form the basis for drugs targeted against calcium channel-related disorders including severe pain, stroke, and migraine. This chapter discusses the specificity of known toxins for different subtypes and splice forms of vertebrate and invertebrate calcium charinels, mechanisms by which the best-characterized toxins inhibit calcium influx, toxin binding sites on the channel, and experimental considerations for the use of peptide toxins in physiology experiments.

Keywords

Calcium Channel Purkinje Neuron Scorpion Toxin Peptide Toxin Spider Venom 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abe, T., Koyano, K., Saisu, H., Nishiuchi, Y. and Sakakibara, S., 1986, Binding of co-conotoxin to receptor sites associated with the voltage-sensitive calcium channel, Neurosci Lett 71:203–208.PubMedGoogle Scholar
  2. Abe, T. and Saisu, H., 1987, Identification ofthe receptor for co-conatoxin in brain. Probable components of the calcium channel), J Biol Chem 262:9877–9882.PubMedGoogle Scholar
  3. Adams, D. J., Smith, A B., Schroeder, C. I., Yasuda, T., and Lewis, R. J., 2003, ω-conotoxin CVID inhibits a pharmacologically distinct voltage sensitive calcium channel associated with transmitter release from preganglionic nerve terminals,) J Biol Chem 278:40S7–4062.Google Scholar
  4. Adams, M. E., Bindokas, V. P., Hasegawa, L. and Venema, V. J., 1990, ω-agatoxins: novel calcium channel arrtagonistB of two subtypes from funnel web spider (Agelenopsis aperta) venom,) J Biol Chem 265:861–867.PubMedGoogle Scholar
  5. Adams, M. E., Mintz, I. M., Reily, M. D., Thanabal, V. and Bean, B. P., 1993, Structureand properties of ω-agatoxin IVB, a new arrtagonist of P-type calcium channels, Mol Pharmacol 44:681–688.PubMedGoogle Scholar
  6. Adams, M. E., Myers, R. A, Imperial, L. S. and Olivera, B. M., 1993, Toxityping rat brain calcium channels with co-toxins from spider and cone snail venoms, Biochemistry 32:12566–12570.PubMedGoogle Scholar
  7. Adams, M. E. and Olivera, B. M., 1994, Neurotoxins: overview of an emerging research technology, Trends Neurosci 17:151–155.PubMedGoogle Scholar
  8. Aiyar, L., Withka, J. M., Rizzi, J. P., Singleton, D. H., Andrews, G. C., Lin, W., Boyd, J., Hanson, D. C., Simon, M., Dethlefs, B. and et al., 1995, Topology of the pore-region of a K+ channel revealed by the NMR-derived structures ofscorpion toxins, Neuron 15:1169–1181.PubMedGoogle Scholar
  9. Albillos, A, Gareia, A G., Olivera, B. and Gandia, L., 1996, Re-evaluation of the P/Q Ca2+ channel components ofBa2+ currents in bovine chromaffin cells superfused with solutions containing low and high Ba2+ concentrations, Pflugers Arch 432:1030–1038.PubMedGoogle Scholar
  10. Aosaki, T. and Kasai, H., 1989, Characterization oftwo kinds of high-voltage-activated Ca-channel currents in chick sensory neurons. Differential sensitivity to dihydropyridines and omega-conotoxin GVIA, Pflugers Arch 414: 150–156.PubMedGoogle Scholar
  11. Avery, R. B. and Johnston, D., 1996, Multiple channel types colllribute to the low-voltage-activated calcium current in hippocampal CA3 pyramidal neurons, J Neurosci 16:5567–5582.PubMedGoogle Scholar
  12. Bargas, J., Ayala, G. X, Hernandez, E. and Galarraga, E., 1998, Ca2+-channels involved in neostriatal glutamatergic transmission, Brain Res Bull 45:521–524.PubMedGoogle Scholar
  13. Bargas, J., Howe, A, Eberwine, J., Cao, Y. and Surmeier, D. J., 1994, Cellular and molecular characterization of Ca2+ currents in acutely isolated, aduh rat neostriatal neurons, J Neurosci 14:6667–6686.PubMedGoogle Scholar
  14. Barnes, S. and Hille, B., 1989, Ionic channels of the inner segment oftiger salamander cone photoreceptors, J Gen Physiol 94:719–743.PubMedGoogle Scholar
  15. Beam, K., 1999, Calcium channel splicing: mind your Ps and Qs, Nat Neurosci 2:393–394.PubMedGoogle Scholar
  16. Bean, B. P., 1984, Nitrendipine block of cardiac calcium channels: high-affinity binding to the insctivated stale, Proc Natl Acad Sci USA 81:6388–6392.PubMedGoogle Scholar
  17. Bech-Hansen, N. T., Naylor, M. J., Maybawn, T. A, Pearce, W. G., Koop, B., Fishman, G. A, Mets, M., Musarella, M. A and Boycott, K. M., 1998, Loss-of-function mutations in a calcium-channel alphalsubunit gene in Xp11.23 cause incomplete X-linked congenital stationary night blindness, Nat Genet 19:264–267.PubMedGoogle Scholar
  18. Beck, H., Steffens, R., Heinemann, U. and Eiger, C. E., 1997, Properties of voltage-activated Ca2+currents in acutely isolated human hippocampal granule cells, J Neurophysiol 77:1526–1537.PubMedGoogle Scholar
  19. Berrow, N. S., Brice, N. L., Tedder, I., Page, K. M. and Dolphin, A. C., 1997, Properties of cloned rat alpha1A calcium channels transiently expressed in the COS-7 cell line, Eur J Neurosci 9:739–748.PubMedGoogle Scholar
  20. Bezanilla, F., 2000, The voltage sensor in voltage-dependent ion channels, Physiol Rev 80:555–592.PubMedGoogle Scholar
  21. Bezanilla, F., 2002, Voltage sensor movements, J Gen Physiol 120:465–473.PubMedGoogle Scholar
  22. Bindokas, V. P. and Adams, M. E., 1989, ω-Aga-I: a presynaptic calcium channel antagonist from venom ofthe funnel web spider, Agelenopsis aperta, J Neurobiol 20:171–188.PubMedGoogle Scholar
  23. Bindokas, V. P., Venema, V. J. and Adams, M. E., 1991, Differential antagonism of transmitter release by subtypes of ω-agatoxins, J Neurophysiol 66:590–601.PubMedGoogle Scholar
  24. Boland, L. M., Morrill J. A and Bean, B. P., 1994, ω-Conotoxin block of N-type calcium channels in frog and rat sympathetic neurons, J Neurosci 14:5011–5027.PubMedGoogle Scholar
  25. Bourinet, E., Soong, T. W., Sutton, K, Slaymaker, S., Mathews, E., Monteil, A, Zamponi, G. W., Nargeot, J. and Snutch, T. P., 1999, Splicing of alA subunit gene generates phenotypic variants of P-and Q-type calcium channels, Nat Neurosci 2:407–415.PubMedGoogle Scholar
  26. Bourinet, E., Stotz, S. C., Spaetgens, R. L., Dayanithi, G., Lemos, J., Nargeot, J. and Zamponi, G. W., 2001, Interaction of SNX482 with domains III and IV inhibits activation gating of α1E (Cav2.3) calcium channels, Biophys J 81:79–88.PubMedGoogle Scholar
  27. Bowers, C. W., Phillips, H. S., Lee, P., Jan, Y. N. and Jan, L. Y., 1987, Identification and purification of an irreversible presynaptic neurotoxin from the venom ofthe spider Hololena curta, Proc Natl Acad Sci USA 84:3506–3510.PubMedGoogle Scholar
  28. Bowersox, S. S. and Luther, R., 1998, Pharmacotherapeutic potential of omega-conotoxin MVIIA (SNX-111), an N-type neuronal calcium channel blocker found in the venom of Conus magus, Toxicon 36:1651–1658.PubMedGoogle Scholar
  29. Bowersox, S. S., Miljanich, G. P., Sugiura, Y., Li, C., Nadasdi, L., Hoffinan, B. B., Ramachandran, J. and Ko, C. P., 1995, Differential blockade of voltage-sensitive calcium channels at the mouse neuromuscular junction by novel omega-conopeptides and omega-agatoxin-IVA, J Pharmacol Exp Ther 273:248–256.PubMedGoogle Scholar
  30. Branton, W. D., Kolton, L., Jan, Y. N. and Jan, L. Y., 1987, Neurotoxins from Plectreurys spider venom are potent presynaptic blockers in Drosophila, J Neurosci 7:4195–4200.PubMedGoogle Scholar
  31. Branton, W. D., Rudnick, M. S., Zhou, Y., Eccleston, E. D., Fields, G. B. and Bowers, L. D., 1993, Fatty acylated toxin structure, Nature 365:496–497.PubMedGoogle Scholar
  32. Brejc, K, van Dijk, W. L., Smit, A B. and Shana, T. K, 2002, The 2.7 A structure of AChBP, homologue of the ligand-binding domain of the nicotinic acetylcholine receptor, Novartis Found Symp 245:22–29; discussion 29–32, 165–168.PubMedGoogle Scholar
  33. Brown, A M., Sayer, R. J., Schwindt, P. C. and Crill, W. E., 1994, P-type calcium channels in rat neocortical neurones, J Physiol 475:197–205.PubMedGoogle Scholar
  34. Carbone, E. and Lux, H. D., 1988, Omega-conotoxin blockade distinguishes Ca from Na permeable states in neuronal calcium channels, Pflugers Arch 413:14–22.PubMedGoogle Scholar
  35. Carbone, E., Prestipino, G., Spadavecehia, L., Franciolini, F. and Possani, L. D., 1987, Blocking of the squid axon K+ channel by noxiustoxin: a toxin from the venom of the scorpion Centruroides noxius, Pflugers Arch 408:423–431.PubMedGoogle Scholar
  36. Cartier, G. E., Yoshikami, D., Gray, W. R., Loo, S., Olivera, B. M. and McIntosh, J. M., 1996, A new alphaconotoxin which targets a3JJ2 nicotinic acetylcholine receptors, J Biol Chem 271:7522–7528.PubMedGoogle Scholar
  37. Cassola, A. C. Jaffe, H., Fales, H. M., Castro Afeche, S., Magnoli, F. and Cipolla-Neto, J., 1998, omegaphonetoxin-IIA: a calcium channel blocker from the spider phoneutria nigriventer, Pflugers Arch 436:545–552.PubMedGoogle Scholar
  38. Canerall, W. A, 2001, A 3D view of sodium channels, Nature 409:988-989, 991. Catterall, W. A., 1977, ActivatiOll ofthe action potential Na+ ionophore by neurotoxins. An allosteric model, J Biol Chem 252:8669–8676.Google Scholar
  39. Catterall, W. A., 1977, Membrane potential-dependent binding of scorpion toxin to the action potential Na+ ionophore. Studies with a toxin derivative prepared by lactoperoxidase-catalyzed iodination, J Biol Chem 252:8660–8668.PubMedGoogle Scholar
  40. Catterall, W. A., 1998, Structure and function of neuronal Ca2+ channels and their role in neurotransmitter release, Cell Calcium 24:307–323.PubMedGoogle Scholar
  41. Catterall, W. A, 2000, Structureand regulation ofvoltage-gated Ca2+ channels, Annu Rev Cell Dev Biol 16:521–555.PubMedGoogle Scholar
  42. Cestele, S. and Catterall, W. A, 2000, Molecular mechanisms of neurotoxin action on voltage-gated sodium channels, Biochimie 82:883–892.PubMedGoogle Scholar
  43. Cestele, S., Qu, Y., Rogers, L. C., Rochat, H., Scheuer, T. and Catterall, W. A, 1998, Voltage sensor-trapping: enhanced activation of sodium channels by beta-scorpion toxin bound to the S3-S4 loop in domain II, Neuron 21:919–931.PubMedGoogle Scholar
  44. Chang, N. S., French, R. J., Lipkind, G. M., Fozzard, H. A and Dudley, S., Jr., 1998, Predominant interactions between mu-conotoxin Arg-13 and the skeletal muscle Na+ channel localized by mutant cycle analysis, Biochemistry 37:4407–4419.PubMedGoogle Scholar
  45. Chuang, R. S., Jaffe, H., Cribbs, L., Perez-Reyes, E. and Swartz, K J., 1998, Inhibition of T-type voltage-gated calcium channels by a new scorpion toxin, Nat Neurosci 1:668-674. Churchill, D. and Macvicar, B. A, 1998, Biophysical and pharmacological characterization of voltagedependent Ca2+ channels in neurons isolated from rat nucleus accumbens, J Neurophysiol 79:635–647.Google Scholar
  46. Cohen, C. J., Ertel, E. A, Smith, M. M., Venerna, V. J., Adams, M. E. and Leibowitz, M. D., 1992, High affinity block of myocardial lAype calcium channels by the spider toxin omega-Aga-toxin IIIA: advantages over 1,4-dihydropyridines, Mol Pharmacol 42HH:947–951.PubMedGoogle Scholar
  47. Connor, M. and Christie, M. L., 1998, Modulation of Ca2+ channel currents of acutely dissociated rat periaqueductalgrey neurons, J Physiol 509 (Pt 1):47–58.PubMedGoogle Scholar
  48. Conticello, S. G., Gilad, Y., Avidan, N., Ben-Asher, E., Levy, Z. and Fainzilber, M., 2001, Mechanisms for evolving hypervariability: the case ofconopeptides, Mol Biol Evol 18:120–131.PubMedGoogle Scholar
  49. Cox, D. H. and Dunlap, K., 1992, Pharmacological discrimination of N-type from L-type calcium current and its selective modulation by transmitters, J Neurosci 12:906–914.PubMedGoogle Scholar
  50. Cruz, L. J., Gray, W. R., Olivera, B. M., Zeikus, R. D., Kerr, L., Yoshikami, D. and Moczydlowski, E., 1985, Conus geographus toxins that discriminate between neuronal and muscle sodium channels, J Biol Chem 260:9280–9288.PubMedGoogle Scholar
  51. Cruz, L. J. and Olivera, B. M., 1986, Calcium channel antagonists. Omega-conotoxin defines a new high affinity site, J Biol Chem 261:6230–6233.PubMedGoogle Scholar
  52. de Weille, J. R., Schweitz, H., Maes, P., Tartar, A and Lazdunski, M., 1991, Calciseptine, a peptide isolated from black mamba venom, is a specific blocker of the L-type calcium channel, Proc Natl Acad Sci USA 88:2437–2440.PubMedGoogle Scholar
  53. Delmas, P., Abogadie, F. C., Buckley, N. J., and Brown, D. A, 2000, Calcium channel gating and modulation by neurotransmittersdepend on cellular compartmentalization, Nature Neurosci 3:670–678.PubMedGoogle Scholar
  54. Desmadryl, G., Chambard, J.M., Valmier, J. and Sans, A, 1997, Multiple voltage-dependent calcium currents in acutely isolated mouse vestibular neurons, Neuroscience 78:511–522.PubMedGoogle Scholar
  55. Dolphin, A C., 1998, Mechanisms of modulation of voltage-dependent calcium channels by G proteins, J Physiol 506 (Pt 1):3–11.PubMedGoogle Scholar
  56. Dos Santos, R. G., Van Renterghem, C., Martin-Mcutot, N., Mansuelle, P., Cordeiro, M. N., Diniz, C. R., Mori, Y., De Lima, M. E. and Seagar, M., 2002, Phoneutria nigriventer omega-phonetoxinHA blocks the Cav2 family ofcalcium channels and interacts with m-conotoxin-binding sites, J Biol Chem 277:13856–13862.PubMedGoogle Scholar
  57. Doyle, D. A, Morais CabraI, L., Pfuetzner, R. A, Kuo, A, Gulbis, J. M., Cohen, S. L., Cool, B. T. and MacKinnon, R., 1998, The structure of the potassium channel: molecular basis of K+ conduction and selectivity, Science 280:69–77.PubMedGoogle Scholar
  58. Dreijer, A M. and Kits, K. S., 1995, Multiple second messenger routes enhance two high-voltage-activated calcium currents in molluscan neuroendocrinecells, Neuroscience 64:787–800.PubMedGoogle Scholar
  59. Ellinor, P. T., Zhang, J. F., Home, W. A and Tsien, R. W., 1994, Structural determinants ofthe blockade ofNtype calcium channels by a peptide neurotoxin, Nature 372:272–275.PubMedGoogle Scholar
  60. Ellinor, P. T., Zhang, J. F., Randall, A D., Zhou, M., Schwarz, T. L., Tsien, R. W. and Home, W. A, 1993, Functional expression of a rapidly inactivating neuronal calcium channel, Nature 363:455–458.PubMedGoogle Scholar
  61. Ertel, E. A., Campbell, K. P., Harpold, M. M., Hofinann, F., Mori, Y., Perez-Reyes, E., Schwartz, A, Snutch, T. P., Tanabe, T., Birnbaumer, L., Tsien, R. W. and Catterall, W. A, 2000, Nomenclature of voltage-gated calcium channels, Neuron 25:533–535.PubMedGoogle Scholar
  62. Ertel, E. A, Cohen, C. J., Leibowitz, M. D., Adams, M., Nguyen, T., Ashley, I. M., and Smith, M. M., 1993, Omega-Aga-IIB: A high affinity peptide blocker ofmultiple types ofvoltage-gated Ca channels. Biophys J 64(2 part 2): A117.Google Scholar
  63. Ertel, E. A, Smith, M. M., Leibowitz, M. D. and Cohen, C. L., 1994, Isolation of myocardial L-type calcium channel gating currents with the spider toxin m-Aga-IIIA, J Gen Physiol 103:731–753.PubMedGoogle Scholar
  64. Ertel, E. A, Warren, V. A, Adams, M. E., Griffin, P. R., Cohen, C. J. and Smith, M. M., 1994, Type III magatoxins: a family of probes for similar binding sites on L-and N-type calcium channels, Biochemistry 33:5098–5108.PubMedGoogle Scholar
  65. Espiritu, D. J., Watkins, M., Dia-Monje, V., Cartier, G. E., Cruz, L. J. and Olivera, B. M., 2001, Venomous cone snails: molecular phylogeny and the generation oftoxin diversity, Toxicon 39:1899–1916.PubMedGoogle Scholar
  66. Fainzilber, M., Lodder, J. C., van der Schors, R. C., Li, K. W., Yu, Z., Burlingame, AL., Geraerts, W. P. and Kits, K. S., 1996, A novel hydrophobic omega-conotoxin blocks molluscan dihydropyridine-sensitive calcium channels, Biochemistry 35:8748–8752.PubMedGoogle Scholar
  67. Feigenbaum, P., Garcia, M. J. and Kaczorowski, G. J., 1988, Evidencefor distinct sites coupled to high affinity omega-conotoxin receptors in rat brain synaptic plasma membrane vesicles, Biochem Biophys Res Commun 154:298–305.PubMedGoogle Scholar
  68. Feldman, D. H., Olivera, B. M. and Yoshikami, D., 1987, Omega Conus geographustoxin: a peptide that blocks calcium channels, FEBS Lett 214:295–300.PubMedGoogle Scholar
  69. Feng, Z. P., Hamid, J., Doering, C., Bosey, G. M., Snutch, T. P. and Zamponi, G. W., 2001a, Residue Gly1326 of the N-type calcium channel alpha IB subunit controls reversibility of omega-conotoxin GVIA and MVIIAblock, J Biol Chem 276:15728–15735.PubMedGoogle Scholar
  70. Feng, Z. P., Hamid, J., Doering, C., Jarvis, S. E., Bosey, G. M., Bourinet, E., Snutch, T. P. and Zamponi, G. W., 2001b, Amino acid reaidues outside ofthe pore region conlribute to N-type calcium channel permeation, J Biol Chem 276:5726–5730.PubMedGoogle Scholar
  71. Fisher, T. E. and Bourque, C. W., 1995, Voltage-gated calcium currents in the magnocellular neurosecretory cells ofthe rat supraoptic nucleus, J Physiol 486 (Pt 3):571–580.PubMedGoogle Scholar
  72. Flinn, J. P., Pallagby, P. K., Lew, M. J., Murphy, R., Angus, J. A and Norton, R. S., 1999, Roles of key functional groups in omega-conotoxin GVIA synthesis, structure and functional assay of selected peptide analogues, Eur J Biochem 262:447–455.PubMedGoogle Scholar
  73. Foebring, R. C. and Scroggs, R. S., 1994, Multiple high-threshold calcium currents in acutely isolated rat amygdaloid pyramidal cells, J Neurophysiol 71:433–436.Google Scholar
  74. Fujita, Y., Mynlieff, M., Dirksea, R. T., Ki, M. S., Niidome, T., Nakai, J., Friedrich, T., Iwabe, N., Miyata, T., Furuichi, T. and et al., 1993, Primary stnJcture and functional expression of the omega-conotoxinsensitive N-type calcium channel from rabbit brain, Neuron 10:585–598.PubMedGoogle Scholar
  75. Gsge, M. J., Rane, S. G., Hockerman, G. H. and Smith, T. J., 2002, The viraIIy encoded fungal toxin KP4 specifically blocks lAype voltage-gated calcium channels, Mol Pharmacol 61:936–944.Google Scholar
  76. Gandia, L., Lara, B., Imperial, J. S., Villarroya, M., Albillos, A, Maroto, R., Garcia, A G. and Olivera, B. M., 1997, Analogies and differences between omega-conotoxins MVnC and MVIID: binding sites and functions in bovine chromaffin cells, Pflugers Arch 435:55–64.PubMedGoogle Scholar
  77. Garcia, M. C., Hernandez-Gallegos, Z., Escamilla, J. and Sanchez, J. A, 2001, Calciseptine, a Ca2+ channel blocker, has agonist actions on L-type Ca2+ currents of frog and mammalian skeletal muscle, J Membr Biol 184:121–129.PubMedGoogle Scholar
  78. Garcia, M. L., Hanner, M., Knaus, H. G., Slaughter, R. and Kaczorowski, G. J., 1999, Scorpion toxins as tools for studying potassium channels, Methods Enzymol 294:624–639.PubMedGoogle Scholar
  79. Gee, N. S., Brown, J. P., Dissanayake, V. U., Offord, J., Thurlow, R. and Woodruff, G. N., 1996, The novel anticonvulsant drug, gabapentin (Neurontin), binds to the α2δ subunit of a calcium channel, J Biol Chem 271:5768–5776.PubMedGoogle Scholar
  80. Gillard, S. E., Volsen, S. G., Smith, W., Beattie, R. E., Bleakman, D. and Lodge, D., 1997, Identification of pore-forming subunit of P-type calcium channels: an antisense study on rat cerebellar Purkinje cells in culture, Neuropharmacology 36:405–409.PubMedGoogle Scholar
  81. Glauner, K. S., Mannuzm, L. M., Gandhi, C. S. and Isacoff, E. Y., 1999, Spectroscopic mapping of voltage sensor movement in the Shaker potassium channel, Nature 402:813–817.PubMedGoogle Scholar
  82. Goldstein, S. A, Pheasant, D. J. and Miller, C., 1994, The charybdotoxin receptor of a Shaker K+ channel: peptide and channel residues mediating molecular recognition, Neuron 12:1377–1388.PubMedGoogle Scholar
  83. Guida, S., Trettel, F., Pagnutti, S., Mantuano, E., Tottene, A, Veneziano, L., Fellin, T., Spadaro, M., Stauderman, K., Williams, M., Volsen, S., Ophoff, R., Frants, R., Jodice, C., Frontali, M. and Pietrobon, D., 2001, Complete loss of P/Q calcium channel activity caused by a CACNAIA missense mutation carried by patients with episodic ataxia type 2, Am J Hum Genet 68:759–764.PubMedGoogle Scholar
  84. Gurevitz, M., Gordon, D., Ben-Natan, S., Turkov, M. and Froy, O., 2001, Diversification ofneurotoxins by C-tail ‘wiggling’: a scorpion recipe for survival, Faseb J 15:1201–1205.PubMedGoogle Scholar
  85. Hall, J. C., 1994, The mating ofa fly, Science 264:1702–1714.PubMedGoogle Scholar
  86. Hamilton, S. L. and Perez, M., 1987, Toxins that affect voltage-dependent calcium channels, Biochem Pharmacol 36:3325–3329.PubMedGoogle Scholar
  87. Hans, M., Urrutia, A, Deal, C., Brust, P. F., Stauderman, K., Ellis, S. B., Harpold, M. M., Johnson, E. C. and Williams, M. E., 1999, Structural elements in domain IV that influence biophysical and pharmacological properties ofhuman α1A-containing high-voltage-activated calcium channels, Biophys J 76:1384–1400.PubMedGoogle Scholar
  88. Hell, J. W., Westenbroek, R. E., Warner, C., Ahlijanian, M. K., Prystay, W., Gilbert, M. M., Snutch, T. P. and Catterall, W. A, 1993, Identification and differential subcellular localization of the neuronal class C and class D L-type calcium channel alpha 1 subunits, J Cell Biol 123:949–962.PubMedGoogle Scholar
  89. Helton, T. D., Kojetin, D. J., Cavanagh, J. and Home, W. A, 2002, Alternative splicing of a β4 subunit prolinerich motif regulates voltage-dependent gating and toxin block of Cav2.1 Ca2+ channels, J Neurosci 22:9331–9339.Google Scholar
  90. Hidalgo, P. and MacKinnon, R., 1995, Revealing the architecture of a K+ channel pore through mutant cycles with a peptide inhibitor, Science 268:307–310.PubMedGoogle Scholar
  91. Hill, J. M., Alewood, P. F. and Craik, D. J., 1996, Three-dimensional solution structure of μ-conotoxin GIIIB, a specific blocker ofskeletal muscle sodium channels, Biochemistry 35:8824–8835.PubMedGoogle Scholar
  92. Hille, B., 2001, Ion Channels of Excitable Membranes, Sinauer Associates, Sunderland, MAGoogle Scholar
  93. Hillyard, D. R., Monje, V. D., Mintz, J. M., Bean, B. P., Nadasdi, L., Ramacbandran, J., Miljanich, G., Azimi Zoonooz, A, McIntosh, J. M., Cruz, L. J. and et al., 1992, A new Conus peptide ligand for mammalian presynaptic Ca2+ channels, Neuron 9:69–77.PubMedGoogle Scholar
  94. Hirooka, K., Bertolesi, G. E., Kelly, M. E., Denovan-Wright, E. M., Sun, X, Hamid, J., Zamponi, G. W., Juhasz, A E., Haynes, L W. and Bames, S., 2002, T-Type calcium channel alO and alH lllIbunits in human retinoblastoma cells and their loss after differeutiation, J Neurophysiol 88:196–205.PubMedGoogle Scholar
  95. Hockerman, G. H., Dilmac, N., Scheuer, T. and Catterall, W. A, 2000, Molecular detenninants of diltiazem block in domains IVS6 and IVS6 of L-type Ca2+ charmels, Mol Pharmacol 58:1264–1270.PubMedGoogle Scholar
  96. Home, W. A, Hawrot, E. and Tsien, R. W., 1991, ω-Conotoxin GVIA receptors of Discopyge electric organ. Characterization of ω-conotoxin binding to the nicotinic acetylcholine receptor, J Btol Chem 266:13719–13725.Google Scholar
  97. Jackson, H. and Usherwood, P. N., 1988, Spider toxins as tools for dissecting elements of excitatory amino acid transmission, TrendsNeurosci 11:278–283.Google Scholar
  98. Jain, K. K., 2000, An evaluation of intrathecal ziconotide for the treatmenl ofchronic pain, Expert Opin Investig Drugs 9:2403–2410.PubMedGoogle Scholar
  99. Jimenez, E. C., Olivera, B. M., Gray, W. R. and Cruz, L J., 1996, Contryphan is a D-tryptophan-containing Conus peptide, J Biol Chem 271:28002–28005.PubMedGoogle Scholar
  100. Jones, S. W. and Marks, T. N., 1989, Calcium currents in bullfrog sympathetic neurons. I. Activation kinetics and pharmacology, J Gen Physiol 94: 151–167.PubMedGoogle Scholar
  101. Jun, K., Piedras-Renleria, E. S., Smith, S. M., Wheeler, D. B., Lee, S. B., Lee, T. G., Chin, H., Adams, M. E., Scheller, R. H., Tsien, R. W. and Shin, H. S., 1999, Ablation of P/Q-type Ca2+ channel currents, ahered synaptic transmission, and progressive ataxia in mice lacking the aIA-subunit, Proc Natl Acad Sci USA 96: 15245–15250.PubMedGoogle Scholar
  102. Kaneko, S., Cooper, C. B., Nishioka, N., Yamasaki, H., Suzuki, A, Jarvis, S. E., Akaike, A, Satob, M. and Zamponi, G. W., 2002, Identification and characterization of novel human Cav2.2 (alpha 1B) calcium channel variants lacking the synaptic protein interaction site, J Neurosci 22:82–92.PubMedGoogle Scholar
  103. Kasai, H., Aosaki, T. and Fukuda, J., 1987, Presynaptic ea-antagonist omega-conotoxin irreversibly blocks N-type Ca-channels in chick sensory neurons, Neurosci Res 4:228–235.PubMedGoogle Scholar
  104. Kasai, H. and Neher, E., 1992, Dihydropyridine-sensitive and omega-conotoxin-sensitive calcium channels in a mammalian neuroblastoma-glioma cell line, J Physiol 448:161–188.PubMedGoogle Scholar
  105. Kerr, L. M. and Yoshikami, D., 1984, A venom peptide with a novel presynaptic blocking action, Nature 308:282–284.PubMedGoogle Scholar
  106. Kim, J. I., Konishi, S., Iwai, H., Kohno, T., Gouda, H., Shimada, I., Sato, K. and Arata, Y., 1995, Threedimensional solution structure of the calcium charmel antagonist omega-agatoxin IVA; consensus molecular folding ofcalcium channel blockers, J Mol Biol 250: 659–671.PubMedGoogle Scholar
  107. Kits, K. S., Lodder, J. C., van der Schors, R. C., Li, K. W., Geraerts, W. P. and Fainzilber, M., 1996, Novel omega-conotoxins block dihydropyridine-insensitive high voltage-activated calcium channels in molluscan neurons, J Neurochem 67:2155–2163.PubMedGoogle Scholar
  108. Kits, K. S. and Mansvelder, H. D., 1996, Voltage sated calcium channels in molluscs: classification, Ca2+ dependent inactivation, modulation and functional roles, Invert Neurosci 2:9–34.PubMedGoogle Scholar
  109. Knight, Y. E., Bartsch, T., Kaube, H. and Goadsby, P. J., 2002, P/Q-type calcium-channel blockade in the periaqueductal gray facilitates trigeminal nociception: a functional genetic link for migraine?, J Neurosci 22:RC213.PubMedGoogle Scholar
  110. Koschak, A, Reimer D., Huber, I., Grabner, M., Glossmann, H., Engel, J. and Striessnig, J., 2001, alpha ID (Cav1.3) subunits can form L-type Ca2+ channelsactivating at negative voltages, J Biol Chem 276:22100–22106PubMedGoogle Scholar
  111. Lamb, G. D. and Walsb, T., 1987, Calcium CIIITCIltB, charge movement and dihydropyridine binding in fast-and slow-twitch muscles ofrat and rabbit, J Physiol 393:595–617.PubMedGoogle Scholar
  112. Lampe, R. A, Defeo, P. A., Davison, M. D., Young, L., Herrnan, J. L, Spreen, R. C., Horn, M. B., Mangano, T. J. and Keitb, R. A, 1993, Isolation and pharmacological characterization of omega-grammotoxin SIA, a novel peptide inhibitor of neuronal voltage-sensitive calcium charmel responses, Mol Pharmacol 44:451–460.PubMedGoogle Scholar
  113. Lancelin, J. M., Kohda, D., Tate, S., Yanagawa, Y., Abe, T., Satake, M. and Inagaki, F., 1991, Tertiary structure ofcoaotoxin GIIIA in aqueous solution, Biochemistry 30:6908–6916.PubMedGoogle Scholar
  114. Laurent, G., 2002, Olfactory network dynamics and the coding of multidimensional signals, Nat Rev Neurosci 3:884–895.PubMedGoogle Scholar
  115. Leao, R. M., Cruz, L. S., Diniz, C. R., Cordeiro, M. N. and Beirao, P. S., 2000, Inhibition of neuronal highvoltage activated calcium channels by the ω-Phoneutria nigriventer Tx3-3 peptide toxin, Neuropharmacology 39:1756–1767.PubMedGoogle Scholar
  116. Ledwell, J. L and Aldricb, R. W., 1999, Mutations in the S4 region isolate the final voltage-dependent cooperative step in potassium channel activation, J Gen Physiol 113:389–414.PubMedGoogle Scholar
  117. Lemon, V. A, Kryzer, T. L., Griesmann, G. E., O’Suilleabbain, P. E., Windebank, A. L., Woppmann, A, Miljanich, G. P. and Lambert, E. H., 1995, Calcium-ehannel antibodies in the Lambert-Eaton syndrome and otherparaneoplastic syndromes, N Engl J Med 332:1467–1474.Google Scholar
  118. Leung, H. T., Branton, W. D., Phillips, H. S., Jan, L and Byerly, L., 1989, Spider toxins selectively block calcium currents in Drosophila, Neuron 3:767–772.PubMedGoogle Scholar
  119. Lewis, R. J., Nielsen, K J., Craik, D. L., Loughnaa, M. L, Adams, D. A, Sharpe, I. A, Luchian, T., Adams, D. J., Bond, T., Thomas, L, Jones, A, Matheson, J. L., Drinkwater, R., Andrews, P. R. and Alewood, P. F., 2000, Novel ω-conotoxins from Conus catus discriminate among neuronal calcium channel subtypes, J Biol Chem 275:35335–35344.PubMedGoogle Scholar
  120. Li, R. A, Ennis, I. L, French, R. J., Dudley, S. C., Jr., Tomaselli, G. F. and Marban, E., 2001, Clockwise domain arrangement of the sodium channel revealed by u-conotoxin (GIIIA) docking orientation, J Biol Chem 276:11072–11071.PubMedGoogle Scholar
  121. Li, R. A, Ennis, I. L, Velez, P., Tomaselli, G. F. and Marban, E., 2000, Novel structural determinants of J1conotoxin (GIIIB) block in rat skeletal muscle (μl) Na+ channels, J Biol Chem 275:27551–27558.PubMedGoogle Scholar
  122. Liang, H. and Elmslie, K S., 2002, Rapid and reversible block of N-type calcium channels (Cav 2.2) by ω-conotoxin GVIA in the absence ofdivalent cations, J Neurosci 22:8884–8890.PubMedGoogle Scholar
  123. Lin, Z., Harris, C. and Lipscombe, D., 1996, The molecular identity of Ca channel αl-subunits expressed in rat sympathetic neurons, J Mol Neurosci 7:257–267.PubMedGoogle Scholar
  124. Lin, Z., Haus, S., Edgerton, J. and Lipscombe, D., 1997, Identification of funct ionally distinct isoforms of the N-type Ca2+ channel in rat sympathetic ganglia and brain, Neuron 18:153–166.PubMedGoogle Scholar
  125. Lin, Z., Lin, Y., Schorge, S., Pan, J. Q., Beierlein, M. and Lipscombe, D., 1999, Alternative splicing of a short cassette exon in α1B generates functionally distinct N-type calcium channels in central and peripheral neurons, J Neurosci 19:5322–5331.PubMedGoogle Scholar
  126. Lipscombe, D., 2002, L-type calcium channels: highs and new lows, Circ Res 90:933–935.PubMedGoogle Scholar
  127. Lipscombe, D., Pan, J. Q. and Gray, A C., 2002, Functional diversity in neuronal voltage-gated calcium channels by alternative splicing of Cavα1), Mol Neurobiol 26:21–44.PubMedGoogle Scholar
  128. Li-Smerin, Y. and Swartz, K J., 1998, Gating modifier toxins reveal a conserved structural motif in voltagegated Ca2+ and K+ channels, Proc Natl Acad Sci USA 95:8585–8589.PubMedGoogle Scholar
  129. Li-Smerin, Y. and Swartz, K J., 2001, Helical structure ofthe CooH terminus of S3 and its contribution to the gating modifier toxin receptor in voltage-gated ion channels, J Gen Physiol 117:205–218.PubMedGoogle Scholar
  130. Li-Smerin, Y. and Swartz, K J., 2000, Localization and molecular determinants of the Hanatoxin receptors on the voltage-sensing domains of a K+ channel, J GenPhysiol 115:673–684.Google Scholar
  131. Llinas, R., Sugimori, M., Lin, J. W. and Cherksey, B., 1989, Blocking and isolation of a calcium channel from neurons in mammals and cephalopods utilizing a toxin fraction (FTX) from funnel-web spider poison, Proc Natl Acad Sci USA 86:1689–1693.PubMedGoogle Scholar
  132. Lu, Q., and Dunlap, K., 1999, Cloning and functional expression of novel N-type Ca2+ channel variants, J Biol Chem 274:34566–34575.PubMedGoogle Scholar
  133. MacKinnon, R., 1991, Determination of the subunit stoichiometry of a voltage-activated potassium channel, Nature 350:232–235.PubMedGoogle Scholar
  134. MacKinnon, R., Cohen, S. L., Kuo, A, Lee, A and Chait, B. T., 1998, Structural conservation in prokaryotic andeukaryotic potassium channels, Science 280:106–109.PubMedGoogle Scholar
  135. MacKinnon, R. and Miller, C., 1988, Mechanism of charybdotoxin block of the high-conductance, Ca2+-activated K+ channel, J Gen Physiol 91:335–349.PubMedGoogle Scholar
  136. Magee, J. C., Avery, R. B., Christie, B. R. and Johnston, D., 1996, Dihydropyridine-sensitive, voltage-gated Ca2+ channels contribute to the resting intracellular Ca2+ concentration of hippocampal CA1 pyramidal neurons, J Neurophysiol 76:3460–3470.PubMedGoogle Scholar
  137. Mannuzzu, L. M., Moronne, M. M. and Isacoff, E. Y., 1996, Direct physical measure of conformational rearrangement underlying potassium channel gating, Science 271:213–216.PubMedGoogle Scholar
  138. Maricq, A. V. and Korenbrot, J. I., 1988, Calcium and calcium-dependent chloride currents generate action potentials in solitary cone photoreceptors, Neuron 1:503–515.PubMedGoogle Scholar
  139. Martin, D. L., McClelland, D., Herd, M. B., Sutton, K. G., Hall, M. D., Lee, K, Pinnock, R. D. and Scott, R. H., 2002, Gabapentin-mediated inhibition of voltage-activated Ca2+ channel currents in cultured sensory neurones is dependent on culture conditions and channel subunit expression, Neuropharmacology 42:353–366.PubMedGoogle Scholar
  140. Matsuyarns, Z. Wakamori, M., Mori, Y., Kawakarni, H., Nakamura, S. and Imoto, K, 1999, Direct alteration ofthe P/Q-type Ca2+ channel property by polyglutamine expansion in spinocerebellar ataxia 6, J Neurosci 19:RC14.Google Scholar
  141. McCleskey, E. W., Fox, A P., Feldman, D. H., Cruz, L. J., Olivera, B. M., Tsien, R. W. and Yoshikami, D., 1987, ω-conotoxin: direct and persistent blockade ofspecific types ofcalcium channels in neurons but not muscle, Proc Natl Acad Sci USA 84:4327–4331.PubMedGoogle Scholar
  142. McDonough, S. I., Boland, L. M., Mintz, I. M. and Bean, B. P., 2002, Interactions among toxins that inhibit N-type and P-type calcium channels, J Gen Phynol 119:313–328.Google Scholar
  143. McDonough, S. I., Lampe, R. A, Keith, R. A and Bean, B. P., 1997a, Voltage-dependent inhibition ofN-and P-type calcium channels by the peptide toxin ro-grammotoxin-SIA, Mol Pharmacol 52:1095–1104.PubMedGoogle Scholar
  144. McDonough, S. I., Mintz, I. M. and Bean, B. P., 1997b, Aheration of P-type calcium channel gating by the spider toxin ω-Aga-IVA, Biophys J 72:2117–2128.PubMedGoogle Scholar
  145. McDonough, I., Swartz, K L, Mintz, I. M., Boland, L. M. and Bean, B. P., 1996, Inhibition of calcium channels in rat central and peripheral neurons by ω-conotoxin MVIIC, J Neurosci 16:2612–2623.PubMedGoogle Scholar
  146. McEnery, M. W., Snowman, A M., Sharp, A H., Adams, M. E. and Snyder, S. H., 1991, Purified ω-conotoxin GVIA receptor ofrat brain resembles a dihydropyridine-sensitive L-type calcium channel, Proc Natl Acad Sci USA 88:11095–11099.PubMedGoogle Scholar
  147. McFarlane, M. B., 1997, Depolarization-induced slowing of Ca2+ channel deactivation in squid neurons, Biophys J 72:1607–1621.PubMedGoogle Scholar
  148. McIntosh, J. M., Hasson, A, Spira, M. E., Gray, W. R., Li, W., Marsh, M., Hillyard, D. R. and Olivera, B. M., 1995, A new family of conotoxins that blocks voltage-gated sodium channels, J Biol Chem 270:16796–16802.PubMedGoogle Scholar
  149. McIntosh, L. M., Santos, A D. and Olivera, B. M., 1999, Conus peptides targeted to specific nicotinic acetylcholine receptor subtypes, Annu Rev Biochem 68:59–88.PubMedGoogle Scholar
  150. Mermelstein, P. G., Foehring, R. C., Tkateh, T., Song. W. L., Baranauskas, G. and Surmeier, D. J., 1999, Properties of Q-type calcium channels in neostriata! and cortical neurons are correlated with beta subunit expression, J Neurosci 19:7268–7277.PubMedGoogle Scholar
  151. Meunier, F. A, Feng, Z.-P., Molgo, J., Zamponi, G. W., and Schiavo, G., 2002, Glycerotoxin from Glycera convolute stimulates neurosecretion by up-regulating N-type Ca2+ channel activity, EMBO J 21:6733–6743.PubMedGoogle Scholar
  152. Miljanich, G. P. and Ramachandran, J., 1995, Antagonists of neuronal calcium channels: structure, function, and therapeutic implications, Annu Rev Pharmacol Toxicol 35:707–734.PubMedGoogle Scholar
  153. Miller, C., 1995, The charybdotoxin family of K+ channel-blocking peptides, Neuron 15:5–10.PubMedGoogle Scholar
  154. Mintz, I. M., 1994, Block of Ca channels in rat central neurons by the spider toxin ω-Aga-IIIA, J Neurosci 14:2844–2853.PubMedGoogle Scholar
  155. Mintz, I. M., Adams, M. E. and Bean, B. P., 1992a, P-type calcium channels in rat central and peripheral neurons, Neuron 9:85–95.PubMedGoogle Scholar
  156. Mintz, I. M., Sabatini, B. Land Regehr, W. G., 1995, Calcium control of transmitter release at a cerebellar synapse, Neuron 15:675–688.PubMedGoogle Scholar
  157. Mintz, I. M., Venema, V. L, Adams, M. E. and Bean, B. P., 1991, Inhibition ofN-and L-type Ca2+ channels by the spider venom toxin ω-Aga-IVA, Proc Natl Acad Sci USA 88:6628–6631.PubMedGoogle Scholar
  158. Mintz, I. M., Venema, V. J., Swiderek, K M., Lee, T. D., Bean, B. P. and Adams, M. E., 1992b, P-type calcium channels blocked by the spider toxin ω-Aga-IVA, Nature 355:827–829.PubMedGoogle Scholar
  159. Mitra, A. K., McCarthy, M. P. and Stroud, R M., 1989, Three-dimensional structure of the nicotinic acetylcholine receptor and location ofthe major associated 43-kD cytoskeletaI protein, determined at 22 A by low dose electron microscopy and x-ray diffraction to 12.5 A, J Cell Biol 109:755–774.PubMedGoogle Scholar
  160. Moise, L., Zeng, H., Caffery, P., Rogowski, R. S., and Hawrot, E., 2002, Structure and function of α-bungarotoxin, J Toxicol Toxin Rev 21: 293–317.Google Scholar
  161. Moreno, H., Rudy, B. and Llinas, R., 1997, beta subunits influence the biophysical and pharmacological differences between P-and Q-type calcium currents expressed in a mammalian cell line, Proc Natl Acad Sci USA 94:14042–14047.PubMedGoogle Scholar
  162. Morgans, C. W., Gaughwin, P. and Maleszka, R., 2001, Expression of the al calcium channel subunit by photoreceptors in the rat retina, Mol Vis 7:202–209.PubMedGoogle Scholar
  163. Mori, Y., Friedrich, T., Kim, M. S., Mikami, A, Nakai, J., Ruth, P., Bosse, E., Hofrnann, F., Flockerzi, V., Furuichi, T., Mikoshiba, K., Imoto, K, Tanabe, T., and Numa, S., 1991, Primarystructure and functional expression from complementary DNA of a brain calcium channel, Nature 350:398–402.PubMedGoogle Scholar
  164. Morita, H., Shi, J., Ito, Y. and Inoue, R., 2002, T-channel-Iike pharmacological properties of highvoltageactivated, nifedipine-insensitive Ca2+ currents in the rat terminal mesenteric artery, Br J Pharmacol 137:467–476.PubMedGoogle Scholar
  165. Mozhayeva, G. N., Naumov, A P., Nosyreva, E. D. and Grishin, E. V., 1980, Potential-dependent interaction of toxin from venom ofthe scorpion Buthus eupeus with sodium channels in myelinated fibre: voltage clamp experiments, Biochim Biophys Acta 597:587–602.PubMedGoogle Scholar
  166. Newcomb, R., Palma, A., Fox, J., Gaur, S., Lau, K., Chung, D., Cong, R., Bell, J. R., Home, B., Nadasdi, L, and Ramachandran, J., 1995, SNX-325, a novel calcium antagonist from the spider Segestria florentina, Biochemistry 34:8341–8347.PubMedGoogle Scholar
  167. Newcomb, R., Szoke, B., Palma, A, Wang, G., Chen, X, Hopkins, W., Cong, R., Miller, J., Urge, L., Tarczy-Homoch, K., Loo, L. A, Dooley, D. J., Nadasdi, L, Tsien, R. W., Lemos, J. and Miljanich, G., 1998, Selective peptide antagonist ofthe class E calcium channel from the venom ofthe tarantula Hysterocrates gigas, Biochemistry 37:15353–15362.PubMedGoogle Scholar
  168. Nielsen, K. J., Adams, D., Thomas, L., Bond, T., Alewood, P. F., Craik, D. J. and Lewis, R. J., 1999, Structureactivity relationships of omega-conotoxins MVIIA, MVIIC and 14 loop splice hybrids at Nand P/Q-type calcium channels, J Mol Biol 289:1405–1421.PubMedGoogle Scholar
  169. Nobile, M., Noceti, F., Prestipino, G. P. and Possani, L. D., 1996, Helothermine, a lizard venom toxin, inhibits calcium current in cerebellar granules, Exp Brain Res 110:15–20.PubMedGoogle Scholar
  170. Norris, T. M., Moya, E., Blagbrough, I.S. and Adams, M. E., 1996, Block of high-thresbold calcium channels by the synthetic polyamines sFIX-3.3 and FIX-3.3, Mol Pharmacol 50:939–946.PubMedGoogle Scholar
  171. Olivera, B. M., 1997, E.E. Just Lecture, 1996. Conus venom peptides, receptor and ion channel targets, and drug design: 50 million years ofneuropharmacology, Mol Biol Cel 8:2101–2109.Google Scholar
  172. Olivera, B. M., Cruz, L. J., de Santos, V., LeCheminant, G. W., Griffin, D., Zeikus, R., McIntosb, J. M., Galyean, R., Varga, L., Gray, W. R., and Rivier, J., 1987, Neuronal calcium channel antagonists. Discrimination between calcium channel subtypes using ω-conotcxin from Conus magus venom, Biochemistry 26:2086–2090.PubMedGoogle Scholar
  173. Olivera, B. M., Gray, W. R., Zeikus, R., McIntosb, J. M., Varga, J., Rivier, J., de Santos, V. and Cruz, L. J., 1985, Peptideneurotoxins from fish-hunting cone snails, Science 230:1338–1343.PubMedGoogle Scholar
  174. Olivera, B. M., McIntosb, J. M., Cruz, L. J., Luque, F. A and Gray, W. R., 1984, Purification and sequence of a presynaptic peptide toxin from Conus geographus venom, Biochemistry 23: 5087–5090PubMedGoogle Scholar
  175. Olivera, B. M., Miljanicb, G. P., Ramachandran, J. and Adaros, M. E., 1994, Calcium channel diversity and neurotransmitter release: the ω-conotoxins and ω-agatoxins, Annu Rev Biochem 63:823–867.PubMedGoogle Scholar
  176. Olivera, B. M., Rivier, J., Clark, C., Ramilo, C. A, Corpuz, G. P., Abogadie, F. C., Mena, E. E., Woodward, S. R., Hillyard, D. R. and Cruz, L J., 1990, Diversity of Conus neuropeptides, Science 249:257–263.PubMedGoogle Scholar
  177. Olivera, B. M., Rivier, J., Scott, J. K., Hillyard, D. R. and Cruz, L J., 1991, Conotoxios, J Biol Chem 266:22067–22070.PubMedGoogle Scholar
  178. Ophoff, R. A., Terwindt, G. M., Vergouwe, M. N., van Eijk, R., Oefuer, P. J., Hoffinan, S. M., Laroerdin, J. E., Mobrenweiser, H. W., Bulman, D. E., Ferrari, M., Haan, J., Liodhout, D., van Ommen, G. J., Hofker, M. H., Ferrari, M. D. and Frants, R. R., 1996, Familial hemiplegic migraine and episodic ataxia type-2 are caused by mutations in the Ca2+ channel gene CACNLlA4, Cell 87:543–552.PubMedGoogle Scholar
  179. Ousley, A. H. and Froehner, S. C., 1994, An anti-peptide antibody specific for the class A calcium channel αl subunit labels mammalian neuromuscular junction, Proc Natl Acad Set USA 91: 12263–12267.Google Scholar
  180. Pan, J. Q. and Lipscombe, D., 2000, Alternative splicing in the cytoplasmic II-III loop ofthe N-type Ca channel αlB submit: functional differences are β subunit-specific, J Neurosci 20:4769–4775.PubMedGoogle Scholar
  181. Pardo, B. and Honegger, P., 1999, High sensitivity of immature GABAergic neurons to blockers of voltagegated calcium channels, Brain Res Dev Brain Res 115:9–16.PubMedGoogle Scholar
  182. Park, C. S. and Miller, C., 1992, Interaction of charybdotoxin with permeant ions inside the pore of a K+ channel, Neuron 9:307–313.PubMedGoogle Scholar
  183. Peng, K., Chen, X. D. and Liang, S. P., 2001, The effect of Huwentoxin-l on Ca2+ channels in differentiated NG108-15 cells, a patch-clamp study, Toxicon 39:491–498.PubMedGoogle Scholar
  184. Perchenet, L. Benardeau, A and Ertel, E. A., 2000, Pharmacological properties of Cav3.2, a low voltageactivated Ca2+ channel cloned from human heart, Naunyn Schmiedebergs Arch PharmacoI 361:590–599.Google Scholar
  185. Piedras-Renteria, E. S., Watase, K., Harata, N., Zhuchenko, O., Zoghbi, H. Y., Lee, C. C. and Tsien, R. W., 2001, Increased expression of α1A Ca2+ channel currents arising from expanded trinucleotide repeats in spinocerebellar ataxia type 6, J Neurosci 21:9185–9193.PubMedGoogle Scholar
  186. Pinto, A, Gillard, S., Moss, F., Whyte, K., Brust, P., Williams, M., Stauderman, K., Harpold, M., Lang, B., Newsom-Davis, L., Bleakman, D., Lodge, D. and Boot, L., 1998, Human autoantibodies specific for the alphalA calcium channel subunit reduce both P-type and Q-type calcium currents in cerebellar neurons, Proc Natl Acad Sci USA 95:8328–8333.PubMedGoogle Scholar
  187. Plummer, M. R., Logothetis, D. E. and Hess, P., 1989, Elementary properties and pharmacological sensitivities of calcium channels in mammalian peripheral neurons, Neuron 2:1453–1463.PubMedGoogle Scholar
  188. Possani, L D., Merino, E., Corona, M., Bolivar, F. and Becerril, B., 2000, Peptides and genes coding for scorpion toxins that affect ion-channels, Biochimie 82:861–868.PubMedGoogle Scholar
  189. Protti, D. A and Llano, I., 1998, Calcium currentsand calcium signaling in rod bipolar cells of rat retinal slices, J Neurosci 18:3715–3724.PubMedGoogle Scholar
  190. Protti, D. A, Reisin, R., Maclcinley, T. A and Uehitel, O. D., 1996, Calcium channel blockers and transmitter release at the normal human neuromuscular junction, Neurology 46:1391–1396.PubMedGoogle Scholar
  191. Ramilo, C. A, Zafaralla, G. C., Nadasdi, L., Hammerland, L. G., Yoshikami, D., Gray, W. R., Kristipati, R., Ramachandran, J., Miljanich, G., Olivera, B. M. and et al., 1992, Novel α-and ω-couotoxins from Conus striatus venom, Biochemistry 31:9919-9926.Google Scholar
  192. Randall, A and Tsien, R.W., 1995, Phannacological dissection ofmuhip le types of Ca2+ channel currents in rat cerebellar granule neurons, J Neurosci 15:2995–3012.PubMedGoogle Scholar
  193. Randall, A D. and Tsien, R. W., 1997, Contrasting biophysical and phannacological properties of T-type and R-type calcium channels, Neuropharmacology 36:879–893.PubMedGoogle Scholar
  194. Ranganathan, R., Lewis, J. H. and MacKinnon, R., 1996, Spatial localization ofthe K+ channel selectivity filter by mutant cycle-based structure analysis, Neuron 16:131–139.PubMedGoogle Scholar
  195. Rash, L D. and Hodgson, W. C., 2002, Pharmacology and biochemistry of spider venoms, Toxicon 40:225–254.PubMedGoogle Scholar
  196. Regan, L. J., 1991, Voltage-dependent calcium currents in Purkinje cells from rat cerebellar vermis, J Neurosci 11:2259–2269.PubMedGoogle Scholar
  197. Regan, L. J., Sah, D. W. and Bean, B. P., 1991, Ca2+ channels in rat centra1 and peripheral neurons: highthreshold current resistant to dihydropyridine blockers and ω-conotoxin, Neuron 6:269–280.PubMedGoogle Scholar
  198. Regehr, W. G. and Mintz, I. M., 1994, Participation of multiple calcium channel types in transmission at single climbing fiber to Purkinje cell synapses, Neuron 12:605–613.PubMedGoogle Scholar
  199. Regehr, W. G. and Mintz, I. M., 1994, Participation of multiple calcium channel types in transmission at single climbing fiberto Purkinje cell synapses, Neuron 12:605–613.PubMedGoogle Scholar
  200. Rigby, A. C., Baleja, J. D., Fwie, B. C. and Furie, B., 1997a, Three-dimensional structure of a gammacarboxyglutamic acid-containing conotoxin, conantokin G, from the marine snail Conus geographus: the metal-free conformer, Biochemistry 36:6906–6914.PubMedGoogle Scholar
  201. Rigby, A C., Baleja, J. D., Li, L., Pedersen, L. G., Furie, B. C. and Furie, B., 1997b, Role of gammacarboxyglutamic acid in the calcium-induced structural transition of conantokin G, a conotoxin from the marine snail Conus geographus, Biochemistry 36:15677–15684.PubMedGoogle Scholar
  202. Rios, E. and Brum, G., 1987, Involvement of dihydropyridine receptors in excitstion-contraction coupling in skeletal muscle, Nature 325:717–720.PubMedGoogle Scholar
  203. Rogers, J. C., Qu, Y., Tanada, T. N., Scheuer, T. and Catterall, W. A, 1996, Molecular determinants of high affinity binding of a-scorpion toxin and sea anemone toxin in the S3-84 extracellular loop in domain IV of the Na+ channel alpha subunit, J Biol Chem 271:15950–15962.PubMedGoogle Scholar
  204. Saegusa, H., Kurihara, T., Zong, S., Kazuno, A, Matsuda, Y., Nonaka, T., Han, W., Toriyama, H. and Tanabe, T., 2001, Suppression of inflammatory and neuropathic painsymptoms in mice lacking the N-type Ca2+ channel, EMBO J 20:2349–2356.PubMedGoogle Scholar
  205. Sano, K., Enomoto, K. and Maeno, T., 1987, Effects of synthetic ω-conotoxin, a new type Ca2+ antagonist, on frog and mouse neuromuscular transmission, Eur J Pharmacol 141:235–241.PubMedGoogle Scholar
  206. Sasaki, T., Feng, Z. P., Scott, R., Grigoriev, N., Syed, N. I., Fainzilber, M. and Sato, K., 1999, Synthesis, bioactivity, and cloning of the L-type calcium channel blocker ω-conotoxin TxVII, Biochemistry 38:12876–12884.PubMedGoogle Scholar
  207. Sather, W. A, Tanabe, T., Zhang, J. F., Mori, Y., Adams, M. E. and Tsien, R. W., 1993, Distinctive biophysical and pharmacological properties of class A (BI) calcium channel alpha 1 subunits, Neuron 11:291–303.PubMedGoogle Scholar
  208. Sato, C., Ueno, Y., Asai, K., Takahashi, K., Sato, M., Engel, A and Fujiyoshi, Y., 2001, The voltage-sensitive sodium channel is a bell-shaped molecule with several cavities, Nature 409:1047–1051.PubMedGoogle Scholar
  209. Scholze, A, Plant, T. D., Dolphin, A C., and Nurnberg, B., 2001, Functional expression and characterization of a voltage-gated Cav1.3 (α1D) calcium channel subunit from an insulin-secreting cell line, Mol Endocrinol 15:1211–1221.PubMedGoogle Scholar
  210. Schweitz, H., Heurteaux, C., Bois, P., Moinier, D., Romey, G. and Lazdunski, M., 1994, Calcicludine, a venom peptide of the Kunitz-type protease inhibitor family, is a potent blocker of high-threshold Ca2+ channels with a high affinity for L-type channels in cerebellar granule neurons, Proc Natl Acad Set USA 91:878–882.Google Scholar
  211. Scott, R. H., Dolphin, A C., Bindokas, V. P. and Adams, M. E., 1990, Inhibition of neuronal Ca2+ channel currents by the funnel web spider toxin ω-Aga-IA, Mol Pharmacol 38:711–718.PubMedGoogle Scholar
  212. Scott, R. H., Gorton, V. J., Harding, L, Patel, D., Pacey, S., Kellenberger, C., Hietter, H. and Bermudez, I., 1997, Inhibition of neuronal high vohage-activated calcium channels by insect peptides: a comparison with the actions ofro-conotoxin GVIA, Neuropharmacology 36:195–208.PubMedGoogle Scholar
  213. Sheets, M. F. and Hand. D. A, 1999, Gating of skeletal and cardiac muscle sodium channels in mammalian cells, J Physiol 514:425–436.PubMedGoogle Scholar
  214. Sheets, M. F. and Hand. D. A, 1995, Vohage-dependent open-state inactivation of cardiac sodium channels: gating current studies with Anthoplewin-A toxin, J Gen Physiol 106:617–640.PubMedGoogle Scholar
  215. Sidacb, S. S. and Mintz, I. M., 2002, Kurtoxin, a gating modifier of neuronal high-and low-threshold Ca channels, J Neurosci 22:2023–2034.Google Scholar
  216. Sidacb, S. S. and Mintz, I. M., 2000, Low-affinity blockade ofneuronal N-type ea channels by the spider toxin ω-agatoxin-IVA, J Neurosci 20:7174–7182.Google Scholar
  217. Smit, A B., Syed, N. I., Schaap, D., van Minnen, J., Klumpennan, J., Kits, K. S., Lodder, H., van der Schors, R. C., van Elk, R., Sorgedrager, B., Brejc, K., Sixma, T. K. and Geraerts, W. P., 2001, A glia-derived acetylcholine-binding protein that modulates synaptic transmission, Nature 411:261–268.PubMedGoogle Scholar
  218. Smith-Maxwell, C. J., Ledwell, J. L and Aldricb, R. W., 1998a, Role of the S4 in cooperativity of voltagedependent potassium channel activation, J Gen Physiol 111:399–420.PubMedGoogle Scholar
  219. Smith-Maxwell, C. J, Ledwell, J. L and Aldricb, R. W., 1998b, Uncharged S4 residues and cooperativity in voltage-dependent potassium channel activation, J Gen Physiol 111:421–439.PubMedGoogle Scholar
  220. Soong, T. W., DeMaria, C. D., Alvania, R. S., Zweifel, L S., Liang, M. C., Mittman, S., Agnew, W. S. and Yue, D. T., 2002, Systematic identification ofsplice variants in human P/Q-type channel αl(2.1) subunits: implications for current density and Ca2+-dependent inactivation, J Neurosci 22:10142–10152.PubMedGoogle Scholar
  221. Soong, T. W., Stea, A, Hodson, C. D., Dubel, S. L., Vincent, S. R. and Snutcb, T. P., 1993, Structure and functional expression of a member of the low voltage-activated calcium channel family, Science 260:1133–1136.Google Scholar
  222. Srinivasan, K. N., Gopalakrishnakone, P., Tan, P. T., Chew, K. C., Cheng, B., Kini, R. M., Kob, J. L., Seah, S. H. and Brusic, V., 2002, SCORPION, a molecular database of scorpion toxins, Taxicon 40:23–31.Google Scholar
  223. Stapleton, A, Blankenship, D. T., Ackennann, B. L., Chen, T. M., Gorder, G. W., Manley, G. D., Palfreyman, M. G., Coutant, J. E. and Cardin, A. D., 1990, Curtatoxins. Neurotoxic insecticidal polypeptides isolated from the funnel-web spider Hololena curta, J Biol Chem 265:2054–2059.PubMedGoogle Scholar
  224. Starr, T. V., Prystay, W. and Snutch, T. P., 1991, Primary structure of a calcium channel that is highly expressed in the rat cerebellum, Proc Natl Acad Sci USA 88:5621–5625.PubMedGoogle Scholar
  225. Stocker, J. W., Nadasdi, L., Aldricb, R. W. and Tsien, R. W., 1997, Preferential interaction of ω-eonotoxins with inactivated N-type Ca2+ channels, J Neurosci 17:3002–3013.PubMedGoogle Scholar
  226. Stotz, S. C., Spaetgens, R. L. and Zamponi, G. W., 2000, Block of voltage-dependent calcium channel by the green mamba toxin calcicludine, J Membr Biol 174:157–165.PubMedGoogle Scholar
  227. Strom, T. M., Nyakatura, G., Apfelstedt-Sylla, E., Hellebrand, H., Lorenz, B., Weber, B. H., Wutz, K., Gutwillinger, N., Ruther, K., Drescher, B., Saner, C., Zrenner, E., Meitinger, T., Rosenthal, A and Meindl, A, 1998, An L-type calcium-channel gene mutated in incomplete X-linked congenital stationary night blindness, Nat Genet 19:260–263.PubMedGoogle Scholar
  228. Sutton, K. G., Martin, D. J., Pinnock, R. D., Lee, K. and Seott, R. H., 2002, Gabapentin inhibits high-threshold calcium channel currents in cultured rat dorsal root ganglion neurones, Br J Pharmacol 135:257–265.PubMedGoogle Scholar
  229. Sutton, K.G., Siok, C., Stea, A, Zamponi, G. W., Heck, S. D., Volkmann, R. A, Ahlijanian, M. K. and Snutcb, T. P., 1998, Inhibition of neuronal calcium channels by a novel peptide spider toxin, DW13.3. Mol Pharmacol 54:407–418.PubMedGoogle Scholar
  230. Swartz, K. J. and MacKinnon, R., 1997a, Hanatoxin modifies the gating of a voltage-dependent K+ channel through multiple binding sites, Neuron 18:665–673.PubMedGoogle Scholar
  231. Swartz, K. J. and MacKinnon, R., 1995, An inhibitor of the Kv2.1 potassium channel isolated from the venom of a Chilean tarantula, Neuron 15:941–949.PubMedGoogle Scholar
  232. Swartz, K. J. MacKinnon, R., 1997b, Mapping the receptor site for hanatoxin, a gating modifier of voltagedependent K+ channels, Neuron 18:675–682.PubMedGoogle Scholar
  233. Tabata, T., Olivera, B. M. and Ishida, AT., 1996, ω-conotoxin-MVIID blocks an ω-conotoxin-GVIA-sensitive, high-threshold Ca2+ current in fish retinal ganglion cells, Neuropharmacology 35:633–636.PubMedGoogle Scholar
  234. Takamori, M., Maruta, T. and Komai, K., 2000, Lambert-Eaton myasthenic syndrome as an autoimmune calcium-channelopathy, Neurosct Res 36:183–191.Google Scholar
  235. Tanabe, T., Takeshima, H., Mikami, A, Flockerzi, V., Takahashi, H., Kangawa, K., Kojima, M., Matsuo, H., Hirose, T. and Numa, S., 1987, Primary structure of the receptor for calcium channel blockers from skeletal muscle, Nature 328:313–318.PubMedGoogle Scholar
  236. Teramoto, N., Ogata, R., Okabe, K., Karneyama, A, Karneyama, M., Watanabe, T. X, Kuriyama, H. and Kitamura, K., 1996, Effects of calciseptine on unitary barium channel currents in guinea-pig portal vein, Pflugers Arch 432:462–470.PubMedGoogle Scholar
  237. Teramoto, T., Kuwada, M., Niidome, T., Sawada, K., Nishizawa, Y. and Katayama, K., 1993, A novel peptide from funnel web spider venom, ω-Aga-TK, select ively blocks, p.type calcium channels, Biochem Biophys Res Commun 196:134–140.PubMedGoogle Scholar
  238. Terlau, H., Stocker, M., Shon, K. J., Mclntosb, J. M. and Olivera, B. M., 1996, μO-conotoxin MrVIA inhibits mammalian sodium channels, but not through site I, J Neurophysiol 76:1423–1429.PubMedGoogle Scholar
  239. Tottene, A, Volsen, S. and Pietrobon, D., 2000, α1E subunits form the pore ofthree cerebellar R-type calcium channels with different pharmacological and permeation properties, J Neurosci 20:171–178.PubMedGoogle Scholar
  240. Toyoshima, C. and Unwin, N., 1988, Ion channel of acetylcholine receptor reconstructed from images of postsynaptic membranes, Nature 336:247–250.PubMedGoogle Scholar
  241. Tsunemi, T., Saegusa, H., Ishikawa, K, Nagayama, S., Murakoshi, T., Mizusawa, H. and Tanabe, T., 2002, Novel Cav2.1 splice variants isolated from Purkinje cells do not generate P-type Ca2+ current, J Biol Chem 277:7214–7221.Google Scholar
  242. Unwin, N., 1995, Acetylcholine receptor channel imaged in the open state, Nature 373:37–43.PubMedGoogle Scholar
  243. Unwin, N., 1998, The nicotinic acetylcholine receptor ofthe Torpedo electric ray, J Struct Biol 121:181–190.PubMedGoogle Scholar
  244. Usowicz, M. M., Sugimori, M., Cherksey, B. and Llinas, R., 1992, P-type calcium channels in the somata and dendrites of adult cerebellar Purkinje cells, Neuron 9:1185–1199.PubMedGoogle Scholar
  245. Venema, V. L, Swiderek, K M., Lee, T. D., Hathaway, G. M. and Adams, M. E., 1992, Antagonism of synaptosomal calcium channels by subtypes of ω-agatoxins, J Biol Chem 267:2610–2615.PubMedGoogle Scholar
  246. Wagner, J. A, Snowman, A. M., Biswas, A, Olivera, B. M. and Snyder, S. H., 1988, ω-conotoxin GVIA binding to a high-affinity receptor in brain: characterization, calcium sensitivity, and solubilization, J Neurosci 8:3354–3359.PubMedGoogle Scholar
  247. Wakamatsu, K, Kohda, D., Hatanaka, H., Lancelin, J. M., Ishida, Y., Oya, M., Nakamura, H., Inagaki, F. and Sato, K, 1992, Structure-activity relationships of μ-conotoxin GIIIA: stnlcture determination of active and inactive sodium channel blocker peptides by NMR and simulated annealing calculations, Biochemistry 31:12577–12584.PubMedGoogle Scholar
  248. Walker, D. and De Waard, M., 1998, Subunit interaction sites in voltage-dependent Ca2+ channels: role in channel function, Trends Neurosci 21:148–154.PubMedGoogle Scholar
  249. Wang, G., Dayanithi, G., Newcomb, R. and Lemos, J. R., 1999, An R-type Ca2+ current in neurohypophysial terminals preferentially regulates oxytocin secretion, J Neurosci 19:9235–9241.PubMedGoogle Scholar
  250. Wang, X, Connor, M., Smith, R., Maciejewski, M. W., Howden, M. E., Nicholson, G. M., Christie, M. J. and King, G. F., 2000, Discovery and characterization of a family of insecticidal neurotoxins with a rare vicinal disulfide bridge, Nat Struct Biol 7:505–513.PubMedGoogle Scholar
  251. Wang, X., Smith, R., Fletcher, J. I., Wilson, H., Wood, C. J., Howden, M. E. and King, G. F., 1999, Structurefunction studies of ω-atracotoxin, a potent antagonist of insect voltage-gated calcium channels, Eur J Biochem 264:488–494.PubMedGoogle Scholar
  252. Wang, X. H., Connor, M., Wilson, D., Wilson, H. J., Nicholson, G. M., Smith, R., Shaw, D., Mackay, L. P., Alewood, P. F., Christie, M. K. and King, G. F., 2001, Discovery and stnlcture of a potent and highly specific blocker of insect calcium channels, J Biol Chem 276:40306–40312.PubMedGoogle Scholar
  253. Wang, Y. X., Bezprozvannaya, S., Bowersox, S. S., Nadasdi, L., Miljanich, G., Mezo, G., Silva, D., Tarczy-Homoch, K. and Lather, R. R., 1998, Peripheral versus central potencies of N-type voltage-sensitive calcium channel blockers, Naunyn Schmiedebergs Arch Pharmacol 357:159–168.PubMedGoogle Scholar
  254. Watanabe, T. X; Itahara, Y., Kuroda, H., Chen, Y. N., Kimura, T. and Sakakibara, S., 1995, Smooth muscle relaxing and hypotensive activities of synthetic calciseptine and the homologous snake venom peptide FS2, Jpn J Pharmacol 68::305–313.Google Scholar
  255. Westenbroek, R. E., Sakurai, T., Elliott, E. M., Hell, J W., Starr, T. V., Snutch, T. P. and Catterall, W. A, 1995, Immunochemical identification and subcellular distribution of the alpha 1A subunits of brain calcium channels, J Neurosci 15:6403–6418.PubMedGoogle Scholar
  256. Wheeler, D. B., Randall, A and Tsien, R. W., 1994, Roles of N-type and Q-type Ca2+ channels in supporting hippocampal synaptic transmission, Science 264:107–111.PubMedGoogle Scholar
  257. White, M. G., Crumling, M. A and Meriney, S. D., 1997, Developmental changes in calcium current pharmacology and somatostatin inhibition in chick parasympathetic neurons, J Neurosci 17:6302–6313.PubMedGoogle Scholar
  258. Williams, M. E., Brust, P. F., Feldman, D. H., Patthi, S., Simerson, S., Maroufi, A., McCue, A F., Velicelebi, G., Ellis, S. B. and Harpold, M. M., 1992, Structure and functional expression of an ω-conotoxin-sensitive human N-type calcium channel, Science 257:389–395.PubMedGoogle Scholar
  259. Williams, M. E., Feldman, D. H., McCue, A. F., Brenner, R., Velicelebi, G., Ellis, S. B. and Harpold, M. M., 1992, Structure and functional expression of αl, α2, and β subunits of a novel human neuronal calcium channel subtype, Neuron 8:71–84.PubMedGoogle Scholar
  260. Williams, M. E., Marubio, L. M., Deal, C. R., Hans, M., Brust, P. F., Philipson, L. H., Miller, R. J., Johnson, E. C., Harpold, M. M. and Ellis, S. B., 1994, Structure and functional characterization of neuronal α1E calcium channel subtypes, J Biol Chem 269:22347–22357.PubMedGoogle Scholar
  261. Wilson, G. F., Richardson, F. C., Fisher, T. E., Olivera, B. M. and Kaczmarek, L. K, 1996, Identification and characterization of a Ca2+-sensitive nonspecific cation channel underlying prolonged repetitive firing in Aplysia neurons, J Neurosci 16:3661–3671.PubMedGoogle Scholar
  262. Wilson, S. M., Toth, P. T., Oh, S. B., Gillard, S. E., Volsen, S., Ren, D., Philipson, L. H., Lee, E. C., Fletcher, C. F., Tessarollo, L., Copeland, N. G., Jenkills, N. A. and Miller, R. J., 2000, The status of voltagedependent calcium channels in α1E knock-out mice, J Neurosci 20:8566–8571.PubMedGoogle Scholar
  263. Winterfield, J. R. and Swartz, K. J., 2000, A hot spot for the interaction of gating modifier toxins with voltagedependent ion channels, J Gen Physiol 116:637–644.PubMedGoogle Scholar
  264. Witcher, D. R., De Waard, M. and Campbell, K. P., 1993a, Characterization ofthe purified N-type Ca2+ channel and the cation sensitivity of ω-conotoxin GVIA binding, Neuropharmacology 32:1127–1139.Google Scholar
  265. Witcher, D. R., De Waard, M., Sakamoto, J., Franzini-Annstrong, C., Pragnell, M., Kahl, S. D. and Campbell, K. P., 1993b, Subunit identification and reconstitution of the N-type Ca2+ channel complex purified from brain, Science 261:486–489.PubMedGoogle Scholar
  266. Woppmann, A, Ramachandran, J. and Miljanich, G. P., 1994, Calcium channel subtypes in rat brain: biochemical characterization of the high-affinity receptors for ω-conopeptides SNX-230 (synthetic MVIIC). SNX-183 (SVIB), and SNX-111 (MVIIA), Mol Cell Neurosci 5:350–357.PubMedGoogle Scholar
  267. Wu, L G. and Saggau, P., 1994, Pharmacological identification oftwo types of presynaptic voltage-dependent calcium channels at CAJ-CAl synapses ofthe hippocampus, J Neurosci 14:5613–5622.PubMedGoogle Scholar
  268. Xu, W. and Lipscombe, D., 2001, Neuronal Cav1.3α1 L-type channels activate at relatively hyperpolarized membrane potentials and are incompletely inhibited by dihydropyridines, J Neurosci 21:5944–5951.PubMedGoogle Scholar
  269. Yan, L. and Adams, M. E., 2000, The spider toxin ω-Aga IIIA defines a high affinity site on neuronal high voltage-activated calcium channels, J Biol Chem 275:21309–21316.PubMedGoogle Scholar
  270. Yasuda, O., Morimoto, S., Chen, Y., Jiang, B., Kimura, T., Sakalcibara, S., Koh, E., Fukuo, K., Kitano, S. and Ogihara, T., 1993, Calciseptine binding to a 1,4-dihydropyridine recognition site of the L-type calcium channel ofrat synaptosomal membranes, Biochem Biophys Res Commun 194:587–594.PubMedGoogle Scholar
  271. Yasuda, O., Morimoto, S., Jiang, B., Kuroda, H., Kimura, T., Sakakibara, S., Fukuo, K., Chen, S., Tamatani, M. and Ogihara, T., 1994, FS2, a mamba venom toxin, is a specific blocker of the L-type calcium channels, Artery 21:287–302.PubMedGoogle Scholar
  272. Yu, H., Rosen, M. K., Saccomano, N. A, Phillips, D., Volkmann, R. A. and Schreiber, S. L., 1993, Sequential assignment and structure determination ofspider toxin ω-Aga-IVB, Biochemistry 32:13123–13129.PubMedGoogle Scholar
  273. Zagotta, W. N., Hoshi, T. and Aldrich, R. W., 1989, Gating of single Shaker potassium channels in Drosophila muscle and in Xenopus oocytes injected with Shaker mRNA, Proc Natl Acad Sci USA 86:7243–7247.PubMedGoogle Scholar
  274. Zengel, J. E., Sosa, M. A and Poage, R. E., 1993, ω-Conotoxin reduces facilitation oftransmitter release at the frog neuromuscularjunction, Brain Res 611:25–30.PubMedGoogle Scholar
  275. Zhang, J. F., Randall, A D., Ellinor, P. T., Home, W. A, Sather, W. A., Tanabe, T., Schwarz, T. L and Tsien, R. W., 1993, Distinctive pharmacology and kinetics of cloned neuronal Ca2+ channels and their possible counterparts in mammalian CNS neurons, Neuropharmacology 32:1075–1088.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • Stefan I. McDonough
    • 1
  1. 1.Marine Biological LaboratoryBioCurrents Research CenterWoods Hole

Personalised recommendations