Skip to main content

Concepts of State-Dependent Pharmacology of Calcium Channels

  • Chapter

Abstract

For many drugs that target ion channels, drug affinity depends strongly on the precise gating state of the channel. A drug’s clinical utility is often due to its state dependence, and state-dependent inhibition is a key consideration for experimental use of a drug. This chapter describes theoretical models of state-dependent inhibition, including use-dependent block, modulated and guarded receptors, and drug-inactivation synergism, and shows how these models can explain the molecular mechanisms of block by several commonly used calcium channel antagonists.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aczel, S., Kurka, B., and Hering. S., 1998, Mechanism of voltage-and use-dependent block of class A Ca2+ channels by mibefradil, Br J Pharmacol 125:447–454.

    Article  PubMed  CAS  Google Scholar 

  • Armstrong, C. M., 1966, Time course of TEA+-induced anomalous rectification in squid giant axons, J Gen Physiol 50:491–503.

    Article  PubMed  CAS  Google Scholar 

  • Armstrong, C. M., 1969, Inactivation of the potassium conductance and related phenomena caused by quaternary ammonium ion injection in squid axons, J Gen Physiol 54:553–575.

    Article  PubMed  CAS  Google Scholar 

  • Bean, B. P., 1984, Nitrendipine block of cardiac calcium channels: high-affinity binding to the inactivated state, Proc Natl Acad Sci USA 81:6388–6392.

    Article  PubMed  CAS  Google Scholar 

  • Berjukow, S., Gapp, F., Aczel, S., Sinnegger, M. J., Mitterdorfer, J., Glossmann, H., and Hering. S., 1999, Sequence differences between α1C and α1S Ca2+ channel subunits reveal structural determinants of a guarded and modulated beozothiazepine receptor, J Biol Chem 274:6154–6160.

    Article  PubMed  CAS  Google Scholar 

  • Beljukow, S., Muksteiner, R., Gapp, F., Sinnegger, M. J., and Hering, S., 2000, Molecular mechanism of calcium channel block by isradipine. Role of a drug-induced inactivated channel conformation, J Biol Chem 275:22114–22120.

    Article  Google Scholar 

  • Beljukow, S. and Hering. S., 2001, Voltage-dependent acceleration of Cav1.2 channel current decay by (+)-and (-)-isradipine, Br J Pharmacol 133:959–966.

    Article  Google Scholar 

  • Beljukow, S., Marksteiner, R., Sokolov, S., Weiss, R. G., Margreiter, E., and Hering. S., 2001, Amino acids in segment IVS6 and beta-Subunit interaction support distinct conformational changes during Cav2.1 inactivation, J Biol Chem 176:17076–17082. Bezprozvanny, I. and Tsien, R. W., 1995, Voltage-dependent blockade of diverse types of voltage-gated Ca2+ channels expressed in Xenopus oocytes by the Ca2+ channel antagonist mibefradil (Ro 40-5967), Mol Pharmacol 48:540-549.

    Article  Google Scholar 

  • Catterall, W. A., 2000, Structure and regulation of voltage-gated Ca2+ channels, Annu Rev Cell Dev Biol 16:521-555. Courtney, K. R., 1975, Mechanism of frequency-dependent inhibition of sodium currents in frog myelinated nerve by the lidocaine derivative GEA, J Pharmacol Exp Ther 195:225–236.

    Google Scholar 

  • Degtiar, V. E., Aczel, S., Doring, F., Timin, E. N., Berjukow, S., Kimball, D., Mitterdorfer, J., and Hering, S., 1997, Callciumchannel block by (-)devapamil is affected by the sequence environmentand compositionof the phenylalkylamine receptor site, Biophys J 73:157–167.

    Article  PubMed  CAS  Google Scholar 

  • Ertel, E. A., Campbell, K. P., Harpold, M. M., Hofinann, F., Mori, Y., Perez-Reyes, E., Schwartz, A., Snutch, T. P., Tanabe, T., Birnbaumer, L., Tsien, R. W., and Catterall, W. A., 2000, Nomenclatureofvoltage-gated calcium channels, Neuron 25:533–535.

    Article  PubMed  CAS  Google Scholar 

  • Hering, S., Sokolov, S., Berjukow, S., Marksteiner, R., and Margreieter, E., 2003, in press.

    Google Scholar 

  • Hering, S., Aczel, S., Grabner, M., Doring, F., Beljukow, S., Mitterdorfer, J., Sinnegger, M. J., Striessaig, J., Degtiar, V. E., Wang, Z., and Glossmann, H., 1996, Transfer of high sensitivity for benzothiazepines from L-type to class A (BI) calcium channels, J Biol Chem 171:24471–24475.

    Google Scholar 

  • Hering, S., Aezel, S., Kraus, R. L, Beljukow, S., Striessnig, J., and Timin, E. N., 1997, Molecular mechanism of use-dependent calcium channel block by phenylalkylamines: role of inactivation, Proc Natl Acad Sci U SA 94:13323–13328.

    Article  CAS  Google Scholar 

  • Hering, S., 2002, beta-Subunits: fine tuning of Ca2+ channel block, Trends Pharmacol Sci 23:509–513.

    Article  PubMed  CAS  Google Scholar 

  • Hille, B., 1977, Local anesthetics: hydrophilic and hydrophobic pathways for the drug-receptorreaction, J Gen Physiol 69:497–515.

    Article  PubMed  CAS  Google Scholar 

  • Hille, B., 1992,. Ionic Channels of Excitable Membranes, in ed., Sinauer Associates, Sunderland,MA.

    Google Scholar 

  • Hockerman, G. H., Dilmac, N., Scheuer, T., and Catterall, W. A., 2000, Molecular determinants of diltiazem block in domains IIIS6 and IVS6 of L-type Ca2+ channels, Mol Pharmacol 58:1264–1270.

    PubMed  CAS  Google Scholar 

  • Hondghem, L M. and Katzung, B. G., 1977, A unifying molecular model for the interaction of antiarrhythmic drugs with cardiac sodium channels: application to quinidine and lidocaine, Proc West Pharmacol Soc 20:253–256.

    PubMed  CAS  Google Scholar 

  • Jimenez, C., Bourinet, E., Leuranguer, V., Richard, S., Snutch, T. P., and Nargeot, J., 2000, Determinants of voltage-dependent inactivation affect Mibefradil block of calcium channels, Neuropharmacology 39:1–10.

    Article  PubMed  CAS  Google Scholar 

  • Khodorov, B., 1979, Some aspects of the pharmacology of sodium channels in nerve membrane. Process of inactivation, Biochem Pharmacol 28:1451–1459.

    Article  PubMed  CAS  Google Scholar 

  • Khodorov, B. I., 1981, Sodium inactivation and drug-induced immobilization of the gating charge in nerve membrane, Prog Biophys Mol Biol 37:49–89.

    Article  PubMed  CAS  Google Scholar 

  • Kraus, R. L., Hering. S., Grabner, M., Ostler, D., and Striessnig, J., 1998, Molecular mechanism of diltiazem interaction with L-type Ca2+ channels, J Biol Chem 273:27205–27212.

    Article  PubMed  CAS  Google Scholar 

  • Lacinova, L., Klugbauer, N., and Hofmann, F., 2000, State-and isoform-dependent interaction of isradipine with the α1C L-type calcium channel, Pflugers Arch 440:50–60.

    PubMed  CAS  Google Scholar 

  • Lee, K. S. and Tsien, R. W., 1983, Mechanism of calcium channel blockade by verapamil, D600, diltiazem and nitrendipine in single dialysed heart cells, Nature 302:790–794.

    Article  PubMed  CAS  Google Scholar 

  • McDonald, T. F., Pelzer, D., and Trautwein, W., 1984, Cat ventricular muscle treated with D600: characteristics of calcium channel block and unblock, J Physiol 352:217–241.

    PubMed  CAS  Google Scholar 

  • Motoike, H. K., Bodi, I., Nakayama, H., Schwartz, A., and Varadi, G., 1999, Aregion in IVS5 of the human cardiac L-type calcium channel is required for the use-dependent block by phenylalkylamines and benzothiezepines, J Biol Chem 274:9409–9420.

    Article  PubMed  CAS  Google Scholar 

  • Nawrath, H. and Wegener, J. W., 1997, Kinetics and state-dependent effects of verapamil on cardiac L-type calcium channels, Naunyn Sehmiedebergs Arch Pharmacol 355:79–86.

    Article  CAS  Google Scholar 

  • Sanguinetti, M. C. and Kass, R. S., 1984, Voltage-dependent block of calcium channel current in the calf cardiac Purkinje fiber by dihydropyridine calcium channel antagonists, Circ Res 55:336–348.

    Article  PubMed  CAS  Google Scholar 

  • Sokolov, S., Weiss, R. G., Kurka, B., Gapp, F., and Hering. S., 1999, Inactivation determinant in the I-II loop of the Ca2+ channel α1-subunit and β-subunit interaction affect sensitivity for the phenylalkylamine (-) gallopamil, J Physiol 519 Pt 2:315–322.

    Article  PubMed  CAS  Google Scholar 

  • Sokolov, S., Timin, E., and Hering, S., 2001, On the role of Ca2+ and voltage-dependent inactivation in Cav1.2 sensitivity for the phenylalkylamine (-)gallopamil, Circ Res 89:700–708.

    Article  PubMed  CAS  Google Scholar 

  • Starrner, C. F. and Grant, A. O., 1985, Phasic ion channel blockade. A kinetic model and parameter estimation procedure, Mol Pharmacol 28:348–356.

    Google Scholar 

  • Strichartz, G. R., 1973, The inhibition of sodium currents in myelinated nerve by quaternary derivatives of lidocaine, J Gen Physiol 62:37–57.

    Article  PubMed  CAS  Google Scholar 

  • Striessnig, J., Grabner, M., Mitterdorfer, J., Hering, S., Sinnegger, M. J., and Glossmann, H., 1998, Structural basis of drug binding to L Ca2+ channels, Trends Pharmacol Sci 19:108–115.

    Article  PubMed  CAS  Google Scholar 

  • Timin, E. N. and Hering, S., 1992, A method for estimation of drug affinity constants to the open conformational state of calcium channels, Biophys J 63:808–814.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Timin, E.N., Berjukow, S., Hering, S. (2004). Concepts of State-Dependent Pharmacology of Calcium Channels. In: McDonough, S.I. (eds) Calcium Channel Pharmacology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-9254-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-9254-3_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4860-3

  • Online ISBN: 978-1-4419-9254-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics