Hydrogels And Hydrophilic Partially Degradable Bone Cements Based On Biodegradable Blends Incorporating Starch

  • Luciano F. Boesel
  • João F. Mano
  • Carlos Elvira
  • Júlio San Roman
  • Rui L. Reis


Bone cements are, traditionally, injectable systems based on acrylic polymers. They are constituted by a solid and a liquid component that harden after mixing due to the polymerization of acrylic monomers in the liquid. Just some minutes after mixing, the paste attains high viscosity and must then be injected into the bone cavity, where the final stages of polymerization will take place. The solid is in most cases constituted by poly(methyl methacrylate) (PMMA) powder (or a copolymer of MMA with others monomers), benzoyl peroxide (BPO, the initiator of the polymerization), and a radio-opacifier, while the liquid is formed by MMA monomer (in some cases with n-butyl methacrylate, BuMA) and dimethyl-p-toluidine (DMT, the activator of the initiator).


Simulated Body Fluid Bone Cement Dynamic Mechanical Analysis Bioactive Glass Acrylic Monomer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lewis, G., 1997, Properties of acrylic bone cement: state of the art review. J. Biomed. Mater. Res. 38: 155–182.CrossRefGoogle Scholar
  2. 2.
    Nafei, A., Kristensen, O., Knudsen, A. M., Hvid, I., and Jensen, J., 1996, Survivorship analysis of cemented total condylar knee arthroplasty: a long-term follow-up report on 348 cases. J. Arthroplasty 11:7–10.CrossRefGoogle Scholar
  3. 3.
    Deb, S., 1999, A Review of improvements in acrylic bone cements. J. Biomater. Appl. 14: 16–48.Google Scholar
  4. 4.
    Katz, J. L., 1996, Application of Materials in Medicine and Dentistry: Orthopedic Applications. In: Biomaterials Science (B.D. Ratner, A.S. Hoffman, F.J. Schoen and J.E. Lemons, eds.), Academic Press, San Diego, pp. 335–346.Google Scholar
  5. 5.
    Shinzato, S., Nakamura, T., Kokubo, T., and Kitamura, Y., 2001, A new bioactive bone cement: effect of glass bead filler content on mechanical and biological properties. J. Biomed. Mater. Res. 54: 491–500.CrossRefGoogle Scholar
  6. 6.
    Shinzato, S., Nakamura, T., Kokubo, T., and Kitamura, Y., 2002, PMMA-based bioactive cement: effect of glass bead filler content and histological change with time. J. Biomed. Mater. Res. 59: 225–232.CrossRefGoogle Scholar
  7. 7.
    Harper, E.J., Braden, M., and Bonfield, W., 2000, Mechanical properties of hydroxyapatite reinforced poly(ethylmethacrylate) bone cement after immersion in a physiological solution: influence of a silane coupling agent. J. Mater. Sci. Mater. Med. 11: 491–497.CrossRefGoogle Scholar
  8. 8.
    Peppas, N. A., 1996, Classes of Materials Used in Medicine: Hydrogels. In Biomaterials Science (B.D. Ratner, A.S. Hoffman, F.J. Schoen and J.E. Lemons, eds.), Academic Press, San Diego, pp. 60–64.Google Scholar
  9. 9.
    Netti, P. A., Shelton, J.C., Revell, P. A., Pirie, C., Smith, S., Ambrosio, L., Nicolais, L., and Bonfield, W., 1993, Hydrogels as an interface between bone and an implant. Biomater. 14: 1098–1104.CrossRefGoogle Scholar
  10. 10.
    Taguchi, T., Kishida, A., and Akashi, M., 1999, Apatite formation on/in hydrogel matrices using an alternate soaking process: II: effect of swelling ratios of poly(vinyl alcohol) hydrogel matrices on apatite formation. J. Biomater. Sci. Polym. Ed. 10: 331–339.CrossRefGoogle Scholar
  11. 11.
    Taguchi, T., Kishida, A., and Akashi, M., 1999, Apatite formation on/in hydrogel matrices using an alternate soaking process: III: effect of physico-chemical factors on apatite formation on/in poly(vinyl alcohol) hydrogel matrices. J. Biomater. Sci. Polym. Ed. 10: 795–804.CrossRefGoogle Scholar
  12. 12.
    Qiu, Y., and Park, K., 2001, Environment-sensitive hydrogels for drug delivery. Adv. Drug Del. Rev. 53:321-339.Google Scholar
  13. 13.
    Athawale, V.D., and Lele, V., 2000, Syntheses and characterisation of graft copolymers of maize starch and methacrylonitrile. Carbohyd. Polym. 41: 407–416.CrossRefGoogle Scholar
  14. 14.
    Athawale, V.D., and Lele, V., 1998, Graft copolymerization onto starch. II. Grafting of acrylic acid and preparation of it’s hydrogels. Carbohyd. Polym. 35: 21–27.CrossRefGoogle Scholar
  15. 15.
    Clausen, A. E., and Schnürch, A. B., 2001, Direct compressible polymethacrylic acid-starch compositions for site-specific drug delivery. J. Control. Release, 75: 93–102.CrossRefGoogle Scholar
  16. 16.
    Gomes, M. E., Ribeiro, A. S., Malafaya, P. B., Reis, R. L., and Cunha, A. M., 2001, A new approach based on injection moulding to produce biodegradable starch based polymeric scaffolds. Biomater. 22: 883–889.CrossRefGoogle Scholar
  17. 17.
    Gomes, M. E., Reis, R. L., Cunha, A. M., Blitterswijk, C. A., and de Bruijn, J. D., 2001, Cytocompatibility and response of osteoblastic-like cells to starch based polymers: effects of several additives and processing conditions. Biomater. 22: 1911–1917.CrossRefGoogle Scholar
  18. 18.
    Gomes, M. E., Godinho, J. S., Tchalamov, D., Cunha, A. M., and Reis, R. L., 2002, Alternative tissue engineering scaffolds based on starch: processing methodologies, morphology, degradation, mechanical properties and biological response. Mater. Sci. Eng. C, 20: 19–26.Google Scholar
  19. 19.
    Malafaya, P. B., Elvira, C., Gallardo, A., San Román, J., and Reis, R. L., 2001, Porous starch-based drug delivery systems processed by a microwabe treatment. J. Biomater. Sci. Polym. Ed. 12: 1227–1241.CrossRefGoogle Scholar
  20. 20.
    Sousa, R. A., Kalay, G., Reis, R. L., Cunha, A. M., and Bevis, M. J., 2000, Injection molding of a starch/EVOH blend aimed as an alternative biomaterial for temporary applications. J. Appl. Polym. Sci., 77: 1303–1315.CrossRefGoogle Scholar
  21. 21.
    Reis, R. L., Cunha, A. M., and Bevis, M. J., 1997, Using nonconventional processing to develop anisotropic and biodegradable composites of starch-based thermoplastics reinforced with bone-like ceramics. Med. Plast. Biomater. 4: 46–50.Google Scholar
  22. 22.
    Espigares, I., Elvira, C., Mano, J. F., Vázquez, B., San Roman, J., and Reis, R. L., 2002, New partially degradable and bioactive acrylic bone cements based on starch blends and ceramic fillers. Biomater. 23: 1883–1895.CrossRefGoogle Scholar
  23. 23.
    Pereira, C. S., Cunha, A. M., Reis, R. L., Vázquez, B., and San Román, J., 1998, New starch-based thermoplastic hydrogels for use as bone cements or drug-delivery carriers. J. Mater. Sci. Mater. Med. 9: 825–833.CrossRefGoogle Scholar
  24. 24.
    Elvira, C., Mano, J. F., San Román, J., and Reis, R. L., 2002, Starch-based biodegradable hydrogels with potential medical applications as drug delivery systems. Biomater. 23: 1955–1966.CrossRefGoogle Scholar
  25. 25.
    ASTM specification F451-86, 1986, Standard specification for acrylic bone cement. In Annual Book of ASTM Standards: Medical Devices; Emergency Medical Services. American Society for Testing and Materials, Philadelphia.Google Scholar
  26. 26.
    Kühn, K.D., 2000, Bone cements. Springer, Heidelberg.CrossRefGoogle Scholar
  27. 27.
    Boesel, L. F., Mano, J. F., and Reis, R.L., 2002, Optimization of the formulation and mechanical properties of starch based partially degradable bone cements. J. Mater Sci. Mater. Med., submitted.Google Scholar
  28. 28.
    Mack E.J., Okano T., Kim S.W., 1987, Biomedical applications of poly(HEMA) and its copolymers. In: Hydrogels in Medicine and Pharmacy-Polymers, vol. II, (N.A. Peppas, ed), CRC Press: Boca Raton, p.65–93Google Scholar
  29. 29.
    Haas S.S., Brauer G.M., and Dickson M.A., 1975, A characterization of poly(methylmethacrylate) bone cement. J. Bone Joint Surg. 57: 380–391.Google Scholar
  30. 30.
    Mano, J. F., Reis, R. L., and Cunha, A. M., 2002, Dynamic mechanical analysis in polymers for medical applications. In: Polymer Based Systems on Tissue Engineering, Replacement and Regeneration (R. L. Reis and D. Cohn, eds.), Nato Science Series, Kluwer Academic, Dordrecht, pp.139–164.CrossRefGoogle Scholar
  31. 31.
    Papadogiannis, Y., Lakes, R. S., Petrou-Americanos, A., and Theothoridou-Pahini, S., 1993, Temperature dependence of the dynamic viscoelastic behavior of chemical-and light-cured composites. Dent. Mater. 9: 118–122.CrossRefGoogle Scholar
  32. 32.
    Vaidyanathan, J., and Vaidyanathan, T. K., 1995, Dynamic mechanical analysis of heat, microwave and visible ligh cure denture base resins. J. Mater. Sci. Mat. Med. 6: 670–674.CrossRefGoogle Scholar
  33. 33.
    Vallo C. I., Cuadrado T. R., and Frontini, P. M., 1997, Mechanical and fracture behaviour evaluation of commercial acrylic bone cements. Polym. Int. 43: 260–268.CrossRefGoogle Scholar
  34. 34.
    Yang, J.-M., Huang, P.-Y., Yang, M.-C., and Lo, S. K., 1997, Effect of MMA-g-UHMWPE grafted fiber on mechanical properties of acrylic bone cements. J. Biomed. Mater. Res. (Appl. Biomater.) 38: 361–369.CrossRefGoogle Scholar
  35. 35.
    Yang, J.-M., Li, H.-M., Yang, M.-C., and Shih, C.-H., 1999, Characterization of acrylic bone cements using dynamic mechanical analysis. J. Biomed. Mater. Res. (Appl. Biomater.) 48: 52–60.CrossRefGoogle Scholar
  36. 36.
    Kalachandra, S., Minton, R. J., Takamata, T., and Taylor, D. F., 1995, Characterization of commercial soft liners by dynamic mechanical analysis. J. Mater. Sci. Mat. Med. 6: 218–222.CrossRefGoogle Scholar
  37. 37.
    Saber-Sheikh, K., Clarke, R. L., and Braden, M, 2000, Viscoelastic properties of some soft lining materials. II-Ageing characteristics. Biomater. 20: 2055–2062.CrossRefGoogle Scholar
  38. 38.
    Sheu, M.-T., Huang, J.-C., Yeh, G.-C., and Ho, H.-O., 2001, Characterization of collagen gel solutions and collagen matrices for cell cultures. Biomater. 22: 1713–1719.CrossRefGoogle Scholar
  39. 39.
    Verdonschot, N., and Huiskes, R., 1997, Acrylic cement creeps but does not allow much subsidence of femoral stems. J. Bone Joint Surg. 79-B: 665–669.CrossRefGoogle Scholar
  40. 40.
    Reis R.L., Cunha A. M., Fernandes M.H., and Correia R.N., 1997, Treatments to induce the nucleation and growth of apatite-like layers on polymeric surfaces and foams. J. Mater. Sci. Mater. Med. 8: 897–905.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • Luciano F. Boesel
    • 1
    • 2
  • João F. Mano
    • 1
    • 2
  • Carlos Elvira
    • 3
  • Júlio San Roman
    • 3
  • Rui L. Reis
    • 1
    • 2
  1. 1.Dept. of Polymer Eng.Univ. of Minho, Campus de AzurémGuimarãesPortugal
  2. 2.3B’s Research GroupUniv. of Minho, Campus de GualtarBragaPortugal
  3. 3.Institute of Science and Technology of Polymers, CSICMadridSpain

Personalised recommendations