Proteomic analysis of Rac1 transgenic mice displaying dilated cardiomyopathy reveals an increase in creatine kinase M-chain protein abundance

  • Nina Buscemi
  • Amanda Doherty-Kirby
  • Mark A. Sussman
  • Gilles Lajoie
  • Jennifer E. Van Eyk
Part of the Developments in Molecular and Cellular Biochemistry book series (DMCB, volume 43)


Here, we demonstrate the application of the proteomic approach to the study of a transgenic mouse model of heart failure and provide an example of a disease-associated protein alteration that can be observed using this approach. Specifically, we applied the proteomic approach to the analysis of a mouse model of dilated cardiomyopathy in which the small GTPase, Rac1, was constitutively expressed specifically in the myocardium. We utilized the methods of two-dimensional gel electrophoresis (2-DE) for protein separation, silver-staining for protein visualization and mass spectrometry (MALDI-TOF and MS/MS) for protein spot identification. Computer-generated composite images were created which represent a normalized average of four 2-DE gel images derived from analysis of either Rac1 transgenic (n = 4) or non-transgenic (n = 4) mice. Analysis of composite images derived from NTG and Rac1 experimental groups revealed numerous statistically significant differences in mean protein spot intensities. Here, we report a statistically significant increase, of approximately 1.6-fold, in the mean protein spot intensity for creatine kinase M-chain in the composite image of Rac1 transgenic mice compared to control. This protein alteration may be consistent with an end-stage heart failure phenotype in which maximal myocardial reserve is employed to sustain survival.


proteomics heart failure Rac1 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ceconi C, Cargnoni A, Curello S, Ferrari R: Recognized molecular mechanisms of heart failure: approaches to treatment. Rev Port Cardiol 17(suppl II): 79–91, 1998Google Scholar
  2. Colucci WS: Molecular and cellular mechanisms of myocardial failure. Am J Cardiol 80: 15L–25L, 1997PubMedCrossRefGoogle Scholar
  3. Pleibner KP, Soding P, Sander S, Oswald H, Neun M, Regitz-Zagrosek V, Fleck E: Dilated cardiomyopathy-associated proteins and their presentation in a WWW-accessible two-dimensional gel protein database. Electrophoresis 18: 802–808, 1997CrossRefGoogle Scholar
  4. Corbett JM, Why HJ, Wheeler CH, Richardson PJ, Archard LC, Yacoub MH, Dunn MJ: Cardiac protein abnormalities in dilated cardiomyopathy detected by two-dimensional polyacrylamide gel electrophoresis. Electrophoresis 19: 2031–2042, 1998PubMedCrossRefGoogle Scholar
  5. Heinke MY, Wheeler CH, Chang D, Einstein R, Drake-Holland A, Dunn MJ, dos Remedios GC: Protein changes observed in pacing-induced heart failure using two-dimensional electrophoresis. Electro-phoresis 19: 2021–2030, 1998CrossRefGoogle Scholar
  6. Heinke MY, Wheeler CH, Yan JX, Amin V, Chang D, Einstein R, Dunn MJ, dos Remedios CG: Changes in myocardial protein expression in pacing-induced canine heart failure. Electrophoresis 20: 2086–2093, 1999PubMedCrossRefGoogle Scholar
  7. Weekes J, Wheeler CH, Yan JX, Weil J, Eschenhagen T, Scholtysik G, Dunn MJ: Bovine dilated cardiomyopathy: Proteomic analysis of an animal model of human dilated cardiomyopathy. Electrophoresis 20: 898–906, 1999PubMedCrossRefGoogle Scholar
  8. Clerk A, Sugden PH: Small guanine nucleotide-binding proteins and myocardial hypertrophy. Circ Res 86: 1019–1023, 2000PubMedCrossRefGoogle Scholar
  9. Sussman MA, Welch S, Walker A, Klevitsky R, Hewet T, Price RL, Schaefer E, Yager K: Altered focal adhesion regulation correlates with cardiomyopathy in mice expressing constitutively active racl. J Clin Invest 105: 875–886, 2000PubMedCrossRefGoogle Scholar
  10. Neverova I, Van Eyk J: Application of reversed phase high performance liquid chromatography for subproteomic analysis of cardiac muscle. Proteomics 2: 22–31, 2002PubMedCrossRefGoogle Scholar
  11. Barany K, Barany M, Giometti CS: Polyacrylamide gel electrophoretic methods in the separation of structural muscle proteins. J Chromatogr A 698:301–332, 1995PubMedCrossRefGoogle Scholar
  12. Shevchenko A, Wilm M, Vorm O, Mann M: Mass spectrometric sequencing of proteins from silver-stained polyacrylamide gels. Anal Chem 68: 850–858, 1996PubMedCrossRefGoogle Scholar
  13. Knecht M, Regitz-Zagrosek V, Pleissner KP, Jungblut P, Steffen C, Hilderbrandt A, Fleck E: Characterization of myocardial protein composition in dilated cardiomyopathy by two-dimensional gel electro-phoresis. Eur Heart J 15(suppl D): 37–44, 1994PubMedGoogle Scholar
  14. Schaub MC, Hefti MA, Harder BA and Eppenberger HM: Various hypertrophic stimuli induce distinct phenotypes in cardiomyocytes. J Mol Med 75: 901–920, 1997PubMedCrossRefGoogle Scholar
  15. Ingwall JS: The hypertrophied myocardium accumulates the MB-creatine kinase isozyme. Eur Heart J 5(suppl F): 129–139, 1984PubMedGoogle Scholar
  16. Neubauer S, Frank M, Hu K, Remkes H, Laser A, Horn M, Ertl G, and Lohse MJ: Changes of creatine kinase gene expression in rat heart post-myocardial infarction. J Mol Cell Cardiol 30: 803–810, 1998PubMedCrossRefGoogle Scholar
  17.   Aspenstrom P: Effectors for the Rho GTPases. Curr Opin Cell Biol 11: 95–102, 1999PubMedCrossRefGoogle Scholar
  18. Bereiter-Hahn j, Luck M, Miebach T, Stelzer HK, Voth M: Spreading of trypsinized cell: Cytoskeletal dynamics and energy requirements. J CellSci 96: 171–188, 1990Google Scholar
  19. Luse DS, Kochel T, Kuempel ED, Coppola JA, Cai H: Transcription initiation by RNA polymerase II in vitro. At least two nucleotides must be added to form a stable ternary complex. J Biol Chem 262: 289–297, 1987PubMedGoogle Scholar
  20. Shiraishi J, Tatsumi T, Keira N, Akashi K, ManoA, Yamanaka S, Matoba S, Asaayama J, Yaoi T, Fushiki S, Fliss H, Nakagawa M: Important role of energy-dependent mitochondrial pathways in cultured rat cardiac apoptosis. Am J Physiol Heart Circ Physiol 281: H1637–H1647,2001PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • Nina Buscemi
    • 1
  • Amanda Doherty-Kirby
    • 3
  • Mark A. Sussman
    • 4
  • Gilles Lajoie
    • 3
  • Jennifer E. Van Eyk
    • 1
    • 2
    • 5
  1. 1.Department of PhysiologyQueen’s UniversityKingstonCanada
  2. 2.Department of BiochemistryQueen’s UniversityKingstonCanada
  3. 3.Department of BiochemistryUniversity of Western Ontario, Siebens-Drake Research InstituteLondonCanada
  4. 4.The Children’s Hospital and Research Foundation, Division of Molecular and Cardiovascular BiologyCincinnatiUSA
  5. 5.Department of PhysiologyQueen’s UniversityKingstonCanada

Personalised recommendations