Skip to main content

Biochemical Mechanisms of Hyperhomocysteinemia in Atherosclerosis: Role of Chemokine Expression

  • Chapter
  • First Online:
  • 184 Accesses

Part of the book series: Progress in Experimental Cardiology ((PREC,volume 8))

Abstract

Abundant epidemiological evidence has demonstrated that hyperhomocysteinemia is a common and independent risk factor for cardiovascular disorders due to atherosclerosis. Monocyte infiltration into the subendothelial space in the arterial wall and later differentia-tion into macrophages are important initial steps in the development of atherosclerotic lesions. Macrophages can then take up large amount of lipids to form foam cells in the lesion. The findings that macrophages and foam cells accumulate in the atherosclerotic lesions of hyper-homocysteinemic patients suggest that the recruitment of monocytes is enhanced during atherogenesis. Monocyte chemoattractant protein-1 (MCP-1) is a potent chemokine that stimulates migration of monocytes into the intima of arterial walls. The level of MCP-1 is increased in atherosclerotic lesions in both human and experimental animals. MCP-1 exerts its action mainly through the interaction with C-C chemokine receptor (CCR2) on the surface of monocytes. In this article, we reviewed recent studies on the homocysteine-induced MCP-1 and its receptor CCR2 expression in vascular cells as well as the involvement of oxidative stress and nuclear factor kappa B (NF-KB) activation. Homocysteine-stimulated CCR2 expression in monocytes together with increased MCP-1 expression in vascular cells may represent a mechanism for homocysteine-enhanced monocyte infiltration into the arte-rial wall during atherogenesis.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Clarke R, Daly L, Robinson K, Naughten E, Cahalane S, Fowler B, Graham I. 1991. Hyperhomo-cysteinemia: an independent risk factor for vascular disease. N Engl J Med 324:1149–1155.

    Article  PubMed  CAS  Google Scholar 

  2. McCully KS. 1996. Homocysteine and vascular disease. Nat Med (NY) 2:386–389.

    Article  CAS  Google Scholar 

  3. Duell PB, Malinow MR. 1997. Homocyst(e)ine: an important risk factor for atherosclerotic vascular disease. Curr Opin Lipidol 8:28–34.

    Article  PubMed  CAS  Google Scholar 

  4. Refsum H, Ueland PM, Nygard O, Vollset SE. 1998. Homocysteine and Cardiovascular Disease. Annu Rev Medicine 49:31–62.

    Article  CAS  Google Scholar 

  5. Mudd SH, Levy HL, Skovby E 1995. Disorders of transsulfuration. In: The Metabolic Basis of Inherited Disease. Ed. CR Scriver, AL Beaudet, WS Sly, D Valle, 1279–1327. New York: McGraw-Hill.

    Google Scholar 

  6. Nygard O, Nordrehaug JE, Refsum H, Ueland PM, Farstad M, Vollset SE. 1997. Plasma homocysteine levels and mortality in patients with coronary artery disease. N Engl J Med 337:230–236.

    Article  PubMed  CAS  Google Scholar 

  7. Genest JJ Jr, McNamara JR, Upson B, Salem DN, Ordovas JM, Schaefer EJ, Malinow MR. 1991. Prevalence of familial hyperhomocyst(e)inemia in men with premature coronary artery disease. Arterioscler Thromb 11:1129–1136.

    Article  PubMed  Google Scholar 

  8. Gallagher PM, Meleady R, Shields DC, Tan KS, McMaster D, Rozen R, Evans A, Graham IM, Whitehead AS. 1996. Homocysteine and risk of premature coronary heart disease. Evidence for a common gene mutation. Circulation 94:2154–2158.

    Article  PubMed  CAS  Google Scholar 

  9. Boushey CJ, Beresford SA, Omenn GS, Motulsky AG. 1995. A quantitative assessment of plasma homocysteine as a risk factor for vascular disease. Probable benefits of increasing folic acid intakes. JAMA 274:1049–1057.

    Article  PubMed  CAS  Google Scholar 

  10. Harker LA, Ross R, Slichter SJ, Scott CR. 1976. Homocysteine-induced arteriosclerosis. The role of endothelial cell injury and platelet response in its genesis. J Clin Invest 58:731–741.

    Article  PubMed  CAS  Google Scholar 

  11. Weiss N, Heydrick S, Zhang YY, Bierl C, Cap A, Loscalzo J. 2002. Cellular redox state and endothe-lial dysfunction in mildly hyperhomocysteinemic cystathionine beta-synthase-deficient mice. Arterioscler Thromb Vasc Biol 22:34–41.

    Article  PubMed  CAS  Google Scholar 

  12. Tsai JC, Perrella MA, Yoshizumi M, Hsieh CM, Haber E, Schlegel R, Lee ME. 1994. Promotion of vascular smooth muscle cell growth by homocysteine: a link to atherosclerosis. Proc Natl Acad Sci USA 91:6369–6373.

    Article  PubMed  Google Scholar 

  13. Chen C, Halkos ME, Surowiec SM, Conklin BS, Lin PH, Lumsden AB. 2000. Effects of homocys-teine on smooth muscle cell proliferation in both cell culture and artery perfusion culture models. J Surg Res 88:26–33.

    Article  PubMed  CAS  Google Scholar 

  14. Durand P, Lussier-Cacan S, Blache D. 1997. Acute methionine load-induced hyperhomocysteinemia enhances platelet aggregation, thromboxane biosynthesis, and macrophage-derived tissue factor activ-ity in rats. FASEB J 11:1157–1168.

    PubMed  CAS  Google Scholar 

  15. O K, Lynn EG, Chung YH, Siow YL, Man RYK, Choy PC. 1998. Homocysteine stimulates the production and secretion of cholesterol in hepatic cells. Biochim Biophys Acta 1393:317–324.

    Article  PubMed  Google Scholar 

  16. Werstuck GH, Lentz SR, Dayal S, Hossain GS, Sood SK, Shi YY, Zhou J, Maeda N, Krisans SK, Malinow MR, Austin RC. 2001. Homocysteine-induced endoplasmic reticulum stress causes dys-regulation of the cholesterol and triglyceride biosynthetic pathways. J Clin Invest 107:1263–1273.

    Article  PubMed  CAS  Google Scholar 

  17. Schlaich MP, John S, Jacobi J, Lackner KJ, Schmieder RE. 2000. Mildly elevated homocysteine con-centrations impair endothelium dependent vasodilation in hypercholesterolemic patients. Atheroscle-rosis 153:383–389.

    Article  CAS  Google Scholar 

  18. Eberhardt RT, Forgione MA, Cap A, Leopold JA, Rudd MA, Trolliet M, Heydrick S, Stark R, Klings ES, Moldovan NI, Yaghoubi M, Goldschmidt-Clermont PJ, Farber HW, Cohen R, Loscalzo J. 2000. Endothelial dysfunction in a murine model of mild hyperhomocyst(e)inemia. J Clin Invest 106:483–491.

    Article  PubMed  CAS  Google Scholar 

  19. Morita H, Kurihara H, Yoshida S, Saito Y, Shindo T, Oh-Hashi Y, Kurihara Y, Yazaki Y, Nagai R. 2001. Diet-induced hyperhomocysteinemia exacerbates neointima formation in rat carotid arteries after balloon injury. Circulation 103:133–139.

    Article  PubMed  CAS  Google Scholar 

  20. Mujumdar VS, Aru GM, Tyagi SC. 2001. Induction of oxidative stress by homocyst(e)ine impairs endothelial function. J Cell Biochem 82:491–500.

    Article  PubMed  CAS  Google Scholar 

  21. Sung FL, Siow YL, Wang G, Lynn EG, O K. 2001. Homocysteine stimulates the expression of mono-cyte chemoattractant protein-1 in endothelial cells leading to enhanced monocyte chemotaxis. Mol Cell Biochem 216:121–128.

    Article  PubMed  CAS  Google Scholar 

  22. Wang G, Siow YL, O K. 2000. Homocysteine stimulates nuclear factor kappa B activity and mono-cyte chemoattractant protein-1 expression in vascular smooth muscle cells: a possible role for protein kinase C. Biochem J 352:817–826.

    Article  PubMed  CAS  Google Scholar 

  23. Wang G, Siow YL, O K. 2001 Homocysteine induces monocyte chemoattractant protein-1 expres-sion by activating NF-kappa B in THP-1 macrophage. Am J Physiol Heart Cir Physiol 280: H2840–2847.

    CAS  Google Scholar 

  24. Lentz SR, Sobey CG, Piegors DJ, Bhopatkar MY, Faraci FM, Malinow MR, Heistad DD. 1996. Vascular dysfunction in monkeys with diet-induced hyperhomocyst(e)inemia. J Clin Invest 98:24–29.

    Article  PubMed  CAS  Google Scholar 

  25. Hofmann MA, Lalla E, Lu Y, Gleason MR, Wolf BM, Tanji N, Ferran LJ Jr, Kohl B, Rao V, Kisiel W, Stern DM, Schmidt AM. 2001. Hyperhomocysteinemia enhances vascular inflammation and accel-erates atherosclerosis in a murine model. J Clin Invest 107:675–683.

    Article  PubMed  CAS  Google Scholar 

  26. Gerrity RG. 1981. The role of the monocyte in atherogenesis: I. Transition of blood-borne mono-cytes into foam cells in fatty lesions. Am J Pathol 103:181–190.

    PubMed  CAS  Google Scholar 

  27. Ross R. 1993. The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature 362:801–809.

    Article  PubMed  CAS  Google Scholar 

  28. Rollins BJ, Yoshimura T, Leonard EJ, Pober JS. 1990. Cytokine-activated human endothelial cells syn-thesize and secrete a monocyte chemoattractant, MCP-l/JE. Am J Pathol 136:1229–1233.

    PubMed  CAS  Google Scholar 

  29. Nelken NA, Coughlin SR, Gordon D, Wilcox JN. 1991. Monocyte chemoattractant protein-1 in human atheromatous plaques. J Clin Invest 88:1121–1127.

    Article  PubMed  CAS  Google Scholar 

  30. Valente AJ, Rozek MM, Sprague EA, Schwartz CJ. 1992. Mechanisms in intimal monocyte-macrophage recruitment. A special role for monocyte chemotactic protein-1. Circulation 86: III20–III25.

    PubMed  Google Scholar 

  31. Li YS, Shyy YJ, Wright JG, Valente AJ, Cornhill JF, Kolattukudy PE. 1993. The expression of mono-cyte chemotactic protein (MCP-1) in human vascular endothelium in vitro and in vivo. Mol Cell Biochem 126:61–68.

    Article  PubMed  CAS  Google Scholar 

  32. Brown Z, Gerritsen ME, Carley WW, Strieter RM, Kunkel SL, Westwick J. 1994. Chemokine gene expression and secretion by cytokine-activated human microvascular endothelial cells. Differential regulation of monocyte chemoattractant protein-1 and interleukin-8 in response to interferon-gamma. Am J Pathol 145:913–921.

    PubMed  CAS  Google Scholar 

  33. Takeya M, Yoshimura T, Leonard EJ, Takahashi K. 1993. Detection of monocyte chemoattractant protein-1 in human atherosclerotic lesions by an anti-monocyte chemoattractant protein-1 mono-clonal antibody. Hum Pathol 24:534–539.

    Article  PubMed  CAS  Google Scholar 

  34. Yla-Herttuala S, Lipton BA, Rosenfeld ME, Sarkioja T, Yoshimura T, Leonard EJ, Witztum JL, Steinberg D. 1991. Expression of monocyte chemoattractant protein 1 in macrophage-rich areas of human and rabbit atherosclerotic lesions. Proc Natl Acad Sci USA 88:5252–5256.

    Article  PubMed  CAS  Google Scholar 

  35. Wang GP, Deng ZD, Ni J, Qu ZL. 1997. Oxidized low density lipoprotein and very low density lipoprotein enhance expression of monocyte chemoattractant protein-1 in rabbit peritoneal exudate macrophages. Atherosclerosis 133:31–36.

    Article  PubMed  CAS  Google Scholar 

  36. Shi W, Haberland ME, Jien ML, Shih DM, Lusis AJ. 2000. Endothelial responses to oxidized lipopro-teins determine genetic susceptibility to atherosclerosis in mice. Circulation 102:75–81.

    Article  PubMed  CAS  Google Scholar 

  37. Cushing SD, Berliner JA, Valente AJ, Territo MC, Navab M, Parhami F, Gerrity R, Schwartz CJ, Fogelman AM. 1990. Minimally modified low density lipoprotein induces monocyte chemotactic protein 1 in human endothelial cells and smooth muscle cells. Proc Natl Acad Sci USA 87:5134–5138.

    Article  PubMed  CAS  Google Scholar 

  38. Reape TJ, Groot PH. 1999. Chemokines and atherosclerosis. Atherosclerosis 147:213–225.

    Article  PubMed  CAS  Google Scholar 

  39. Dudman NP, Temple SE, Guo XW, Fu W, Perry MA. 1999. Homocysteine enhances neutrophil-endothelial interactions in both cultured human cells and rats in vivo. Circ Res 84:409–416.

    Article  PubMed  CAS  Google Scholar 

  40. Brand K, Page S, Rogler G, Bartsch A, Brandl R, Knuechel R, Page M, Kaltschmidt C, Baeuerle PA, Neumeier D. 1996. Activated transcription factor nuclear factor-kappa B is present in the ath-erosclerotic lesion. J Clin Invest 97:1715–1722.

    Article  PubMed  CAS  Google Scholar 

  41. Brand K, Page S, Walli AK, Neumeier D, Baeuerle PA. 1997. Role of nuclear factor-kappa B in atherogenesis. Exp Physiol 82:297–304.

    PubMed  CAS  Google Scholar 

  42. Marumo T, Schini-Kerth VB, Fisslthaler B, Busse R. 1997. Platelet-derived growth factor-stimulated superoxide anion production modulates activation of transcription factor NF-kappaB and expression of monocyte chemoattractant protein 1 in human aortic smooth muscle cells. Circulation 96:2361–2367.

    Article  PubMed  CAS  Google Scholar 

  43. Ueda A, Ishigatsubos Y, Okubo T, Yoshimura T. 1997. Transcriptional regulation of the human mono-cyte chemoattractant protein-1 gene. Cooperation of two NF-kappaB sites and NF-kappaB/Rel subunit specificity. J Biol Chem 272:31092–31099.

    Article  PubMed  CAS  Google Scholar 

  44. Baldwin AS Jr. 1996. The NF-kappa B and I kappa B proteins: new discoveries and insights. Annu Rev Immunol 14:649–683.

    Article  PubMed  CAS  Google Scholar 

  45. Thurberg BL, Collins T. 1998. The nuclear factor-kappa B/inhibitor of kappa B autoregulatory system and atherosclerosis. Curr Opin Lipidol 9:387–396.

    Article  PubMed  CAS  Google Scholar 

  46. Simeonidis S, Stauber D, Chen G, Hendrickson WA, Thanos D. 1999. Mechanisms by which IkappaB proteins control NF-kappaB activity. Proc Natl Acad Sci USA 96:49–54.

    Article  PubMed  CAS  Google Scholar 

  47. Charo IF. 1999. CCR2: from cloning to the creation of knockout mice. Chem Immunol 72:20–41.

    Google Scholar 

  48. Charo IF, Myers SJ, Herman A, Franci C, Connolly AJ, Coughlin SR. 1994. Molecular cloning and functional expression of two monocyte chemoattractant protein 1 receptors reveals alternative splic-ing of the carboxyl-terminal tails. Proc Natl Acad Sci USA 91:2752–2756.

    Article  PubMed  CAS  Google Scholar 

  49. Han KH, Tangirala RK, Green SR, Quehenberger O. 1998. Chemokine receptor CCR2 expression and monocyte chemoattractant protein-1-mediated chemotaxis in human monocytes A regulatory role for plasma LDL. Arterioscler Thromb Vasc Biol 18:1983–1991.

    Article  PubMed  CAS  Google Scholar 

  50. Boring L, Gosling J, Cleary M, Charo IF. 1998. Decreased lesion formation in CCR2 mice reveals a role for chemokines in initiation of atherosclerosis. Nature 394:894–897.

    Article  PubMed  CAS  Google Scholar 

  51. Wang G, O K. 2001. Homocysteine stimulates monocyte chemoattractant protein-1 receptor CCR2 expression in human monocytes: involvement of oxygen free radicals. Biochem J 357:233–240.

    Article  PubMed  CAS  Google Scholar 

  52. Saccani A, Saccani S, Orlando S, Siron M, Bernasconi, S, Ghezz P, Mantovan A, Sica A. 2000. Redox regulation of chemokine receptor expression. Proc Natl Acad Sci USA 97:2761–2766.

    Article  PubMed  CAS  Google Scholar 

  53. Wilcken DEL, Wang XL, Adachi T, Hara H, Duarte N, Green K, Wilcken B. 2000. Relationship between homocysteine and superoxide dismutase in homocystinuria Possible relevance to cardiovas-cular risk. Arterioscler Thromb Vasc Biol 20:1199–1202.

    Article  PubMed  CAS  Google Scholar 

  54. Upchurch GR Jr, Welch GN, Fabian AJ, Freedman JE, Johnson JL, Keaney JF Jr, Loscalzo J. 1997. Homocysteine decreases bioavailable nitric oxide by a mechanism involving glutathione peroxidase. J Biol Chem 272:17012–17017.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Karmin, O., Siow, Y.L. (2003). Biochemical Mechanisms of Hyperhomocysteinemia in Atherosclerosis: Role of Chemokine Expression. In: Pierce, G.N., Nagano, M., Zahradka, P., Dhalla, N.S. (eds) Atherosclerosis, Hypertension and Diabetes. Progress in Experimental Cardiology, vol 8. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-9232-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-9232-1_4

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4850-4

  • Online ISBN: 978-1-4419-9232-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics