Augmented Energy Transfer in Rat Heart Mitochondria: Compensatory Response to Abnormal Household of Energy in Acute Diabetes

  • Attila Ziegelhöffer
  • Iveta Waczulíková
  • Tanya Ravingerová
  • Barbara Ziegelhöffer-Mihalovičová
  • Jan Neckář
  • Ján Styk
Part of the Progress in Experimental Cardiology book series (PREC, volume 8)

Abstract

Hearts of rats with diabetes mellitus are generally characterized by energy demands exceeding their energy production. Nevertheless, although working permanently in energy deficiency, the diabetic hearts may also exhibit decreased vulnerabil-ity to ischemia and calcium overload. This points to presence of adaptation changes in cardiac energetics, in which at least that limited amount of energy which the diabetic heart mitochondria can produce, may be transported through the mitochondrial membrane to sites of its utilization at a non-limiting rate.

Key words

Adaptation of heart to diabetes Tolerance to ischemia Endogenous protective mechanisms in heart Mitochondrial contact sites Mitochondrial membrane fluidity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dhalla NS, Liu X, Panagia V, Takeda N. 1998. Subcellular remodeling and heart dysfunction in chronic diabetes. Cardiovasc Res 40:239–247.PubMedCrossRefGoogle Scholar
  2. 2.
    Ziegelhöffer A, Ravingerov¨¢ T, Styk J, Džurba A, Volkovov¨¢ K, Ȩ¢rsky J, Waczul¨ªkov¨¢ I. 1998. Hearts with diabetic cardiomyopathy: Adaptation to calcium overload. Exp Clin Cardiol 3:158–161.Google Scholar
  3. 3.
    Pierce GN, Dhalla NS. 1984. Heart mitochondrial function in chronic experimental diabetes in rats. Can J Cardiol 1:48–54.Google Scholar
  4. 4.
    Pierce GN, Ramjiwan B, Meng H-P. 1991. Cardiac sarcolemma membrane alterations during the diabetic cardiomyopathy. In: The Diabetic Heart. Ed. M Nagano and NS Dhalla, 229–236. New York: Raven Press.Google Scholar
  5. 5.
    Gotzshe O. 1991. Myocardial calcium uptake and catecholamine sensitivity in experimental diabetes. In: The Diabetic Heart. Ed. M Nagano and NS Dhalla, 199–208. New York: Raven Press.Google Scholar
  6. 6.
    Ziegelhöffer A, Ravingerov¨¢ T, Styk J, Tribulov¨¢ N, Volkovov¨¢ K, Šebokov¨¢ J, Breier A. 1996. Diabetic cardiomyopathy in rats: biochemical mechanisms of elevated tolerance to calcium overload. Diabetes Res Clin Pract 31:S93–S103.PubMedCrossRefGoogle Scholar
  7. 7.
    Ziegelhöffer A, Kjeldsen K, Bundgaard H, Breier A, Vrbjar N, Džurba A. 2000. Na,K-ATPase in the myocardium: Molecular principles, functional and clinical aspects. Gen Physiol Biophys 19:9–47.PubMedGoogle Scholar
  8. 8.
    Ziegelhöffer-Mihalovičov¨¢ B, Okruhlicov¨¢ L’, Tribulov¨¢ N, Ravingerov¨¢ T, Volkovov¨¢ K, Šebokov¨¢ J, Ziegelhöffer A. 1997. Mitochondrial contact sites detected by creatine phosphokinase activity in the hearts of normal and diabetic rats. Is mitochondrial contact site formation a calcium dependent process? Gen Physiol Biophys 16:329–338.Google Scholar
  9. 9.
    Strödter D, Willmann P, Willmann J, Federlin K, Schaper W. 1991. In: The Diabetic Heart. Ed. M Nagano and NS Dhalla, 383–393. New York: Raven Press.Google Scholar
  10. 10.
    Fedelešov¨¢ M, Dhalla NS, Balasubramanian V, Ziegelhöffer A. 1972. Energy dependent stimulation of membrane bound Mg2+ and Na+-K+-ATPase by glucose. In: Les Surcharges Cardiaques (Heart Overloading), Colloque INSERM. Ed. P Hatt, 217–221. Paris: INSERM.Google Scholar
  11. 11.
    Askenasy N. 2001. Glycolysis protects sarcolemmal membrane integrity during total ischemia in the rat heart. Basic Res Cardiol 96:612–622.PubMedCrossRefGoogle Scholar
  12. 12.
    Seymour A-M, Brosnan MJ. 1991. Nuclear magnetic resonance investigations of energy metabolism in diabetic cardiomyopathy. In: The Diabetic Heart. Ed. M Nagano and NS Dhalla, 371–382. New York: Raven Press.Google Scholar
  13. 13.
    Ravingerov¨¢ T, Styk J, Pancza D, Tribulov¨¢ N, Šebokov¨¢ J, Volkovov¨¢ K, Ziegelhöffer A, Slez¨¢k J. 1996. Diabetic cardiomyopathy in rats: alleviation of myocardial dysfunction caused by Ca2+ overload. Diabetes Res Clin Pract 31:S105–S112.CrossRefGoogle Scholar
  14. 14.
    Tani M, Neely JR. 1988. Hearts from diabetic rats are more resistant to in vitro ischemia: possible role of altered Ca2+ metabolism. Circ Res 62:931–940.PubMedCrossRefGoogle Scholar
  15. 15.
    Ravingerov¨¢ T, Kol¨¢ř F, Neck¨¢ř J, Štetka R, Volkovov¨¢ K, Ziegelhöffer A, Styk J. 2001. Ventricular arrhythmias following coronary artery occlusion in rats: is the diabetic heart less or more sensitive to ischemia? Basic Res Cardiol 96:160–168.CrossRefGoogle Scholar
  16. 16.
    Ravingerov¨¢ T, Štetka R, Baranč¨ªk M, Volkovov¨¢ K, Pancza D, Ziegelhöffer A, Styk J. 2001. Response to ischemia and endogenous myocardial protection in the diabetic heart. In: Diabetes and Cardiovascular Disease. Ed. A Angel, N Dhalla, G Pierce and P Singal, 285–293. New York: Kluwer Academic/Plenum Publishers.CrossRefGoogle Scholar
  17. 17.
    Strniskov¨¢ M, Neck¨¢ř J, Baranč¨ªk M, Kol¨¢ř F, Ravingerov¨¢ T 2001. Rats with acute diabetes mellitus are more resistant to ischemic injury. J Mol Cell Cardiol 33:A114CrossRefGoogle Scholar
  18. 18.
    Ziegelhöffer A, Ravingerov¨¢ T, Styk J, Šebokov¨¢ J, Waczul¨ªkov¨¢ J, Breier A, Džurba A, Volkovov¨¢ K, Ȩ¢rsky J, Turecký L. 1997. Mechanisms that may be involved in calcium tolerance of the diabetic heart. Mol Cell Biochem 176:191–198.PubMedCrossRefGoogle Scholar
  19. 19.
    Kusama Y, Hearse DL, Avkiran M. 1992. Diabetes and susceptibility of reperfusion-induced vetricular arrhythmias. J Mol Cell Cardiol 24:411–421.PubMedCrossRefGoogle Scholar
  20. 20.
    Ravingerov¨¢ T, Štetka R, Pancza D, Uličn¨¢ O, Ziegelhöffer A, Styk J. 2000. Susceptibility to ischemiainduced arrhythmias and the effect of preconditioning in the diabetc rat heart. Physiol Res 49:607–616.Google Scholar
  21. 21.
    Kuo HT, Moore KH, Giomelli F, Wiener J. 1983. DeFective oxidative metabolism of heart mitochondria From genetically diabetic mice. Diabetes 32:181–187.CrossRefGoogle Scholar
  22. 22.
    Bakker A, Bernaert I, De Bie M, Ravingerov¨¢ T, Ziegelhöffer A. 1994. The effect of calcium on mitochondrial contact sites: a study on isolated rat hearts. Biochim Biophys Acta 1224:583–588.PubMedCrossRefGoogle Scholar
  23. 23.
    Ziegelhöffer-Mihalovičov¨¢ B, Ziegelhöffer A, Ravingerov¨¢ T, Kol¨¢ř F, Jacob W, Tribulov¨¢ N. 2002. Regulation of mitochondrial contact sites in neonatal, juvenile, and diabetic hearts. 2002 Mol Cell Biochem 236:37–44.CrossRefGoogle Scholar
  24. 24.
    Tinder P. 1969. Determination of blood glucose using 4-amino phenazon as oxygen acceptor. J Clin Path 22:246–253.CrossRefGoogle Scholar
  25. 25.
    Burrin JM, Worth R, Ashworth AA, Alberti KGMM. 1980. Automated colorimetric estimation of glycosylated hemoglobin. Clin Chim Acta 106:45–50.PubMedCrossRefGoogle Scholar
  26. 26.
    Watson D. 1960. A simple method for determination of serum cholesterol. Clin Chim Acta 5:613–615.PubMedCrossRefGoogle Scholar
  27. 27.
    Fossati P, Prencipe L. 1982. Serum triglycerides determined colorimetrically with an enzyme that produces hydrogen peroxide. Clin Chem 28:2077–2080.PubMedGoogle Scholar
  28. 28.
    Biermans W, Bernaert I, De Bie M, Nijs B, Jacob W. 1989. Ultrastructural localisation of creatine kinase activity in the contact sites between inner and outer mitochondrial membranes in rat myocardium. Biochim Biophys Acta 974:74–80.PubMedCrossRefGoogle Scholar
  29. 29.
    Baddeley AJ, Gundersen HJG, Cruz-Olive RM. 1986. Estimation of surface area of vertical sections. J Microsc (Oxford) 142:259–276.CrossRefGoogle Scholar
  30. 30.
    Neck¨¢ř J, Papoušek F, Nov¨¢kov¨¢ O, Ošt’¨¢dal B, Kol¨¢ř F. 2002. Cardioprotective effects of chronic hypoxia and ischaemic preconditioning are not additive. Basic Res Cardiol 97:161–167.CrossRefGoogle Scholar
  31. 31.
    Walker MJA, Curtis MJ, Hearse DJ, Campbell RWS, Jansen MJ, Yellon DM, Cobbe SM, Coker SM, Harness JB, Harron WG, Higgins AJ, Julian DG, Lab MJ, Manning AS, Northover BJ, Parratt JR, Riemersma RA, Riva E, Russell DC, Sheridan DJ, Winslow E, Woodward B. 1988. The Lambeth Conwentions: guide-lines for study of arrhythmias in ischaemia, infarction and reperfusion. Cardiovasc Res 22:447–455.PubMedCrossRefGoogle Scholar
  32. 32.
    Vrbjar N, Soos J, Ziegelhöffer A. 1984. Secondary structure of heart sarcolemmal proteins during interaction with metallic cofactors of (Na,K)-ATPase. Gen Physiol Biophys 3:317–325.PubMedGoogle Scholar
  33. 33.
    Lehninger AL, Carafoli E, Rossi CS. 1967. Energy linked ion movements in mitochondrial systems. Advanced Enzymology 29:259–320.Google Scholar
  34. 34.
    Ziegelhöffer A, Monoš¨ªkov¨¢ R, Džurba A, Vrbjar N. 1982. Influence of ischemia on the activities of mitochondrial creatine phosphokinase in the myocardium. Bratisl Lek Listy (Bratislava Medical Letters) 77:566–575.Google Scholar
  35. 35.
    Lowry OH, Rosebrough NJ, Farr AR, Randall RJ. 1953. Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275.Google Scholar
  36. 36.
    Taussky AA, Shorr EE. 1953. A microcolorimetric method for determination of inorganic phosphorus. J Biol Chem 202:575–583.Google Scholar
  37. 37.
    Šikurov¨¢ L, Nemcov¨¢ P, Kvasnička P, Hianik T. 1997. Fluorescence anisotropy studies of ACTH interaction with lecithin bilayers. J Fluorescence 7:151S–153S.Google Scholar
  38. 38.
    Ziegelhöffer A, Styk J, Ravingerov¨¢ T, Šebokov¨¢ J, Volkovov¨¢ K, Waczul¨ªkov¨¢ I, Ȩ¢rsky J, Džurba A, Dočolomanský P. 1999. Prevention of processes coupled with free radical formation prevents also the development of calcium resistance in the diabetic heart. Life Sci 65:1999–2001.PubMedCrossRefGoogle Scholar
  39. 39.
    Wyss M, Smeiting J, Wevers RA, Wallimann T. 1992. Mitochondrial creatine kinase: A key enzyme of aerobic energy metabolism. Biochim Biophys Acta 1102:119–166.PubMedCrossRefGoogle Scholar
  40. 40.
    Knoll G, Brdiczka D. 1993. Changes in freeze fractured mitochondrial membranes correlated to their energy state¡ªdynamic interactions of the boundary membranes. Biochim Biophys Acta 773:102–110.Google Scholar
  41. 41.
    Oberley LW. 1988. Free radicals and diabetes. Free Rad Biol Med 5:113–124.PubMedCrossRefGoogle Scholar
  42. 42.
    Baynes JW. 1991. Role of oxidative stress in development of complications in diabetes. Diabetes 40:405–412.PubMedCrossRefGoogle Scholar
  43. 43.
    Waczul¨ªkov¨¢ I, Šikurov¨¢ L, Ȩ¢rsky J. 2002. Fluidity gradient of erythrocyte membranes in diabetics: the effect of resorcylidene aminoguanidine. Bioelectrochemistry 55:53–55.CrossRefGoogle Scholar
  44. 44.
    Watala C, Winocour P. 1992. The relationship of chemical modification of membrane proteins and plasma lipoproteins to reduced membrane fluidity of erythrocytes of diabetic subjects. Clin Chem Clin Biochem 30:513–519.Google Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • Attila Ziegelhöffer
    • 1
  • Iveta Waczulíková
    • 2
  • Tanya Ravingerová
    • 1
  • Barbara Ziegelhöffer-Mihalovičová
    • 3
  • Jan Neckář
    • 4
  • Ján Styk
    • 1
  1. 1.Institute for Heart ResearchSlovak Academy of SciencesBratislavaSlovak Republic
  2. 2.Department of Biophysics and Chemical PhysicsFaculty of Mathematics, Physics and Informatics, Comenius UniversityBratislavaSlovak Republic
  3. 3.Carl-Ludwig-Institute of PhysiologyUniversity of LeipzigLeipzigGermany
  4. 4.Institute of PhysiologyAcademy of Sciences of the Czech Republic and Centre of Cardiovascular ResearchPragueCzech Republic

Personalised recommendations