Skip to main content

Mechanisms Underlying Contractile Dysfunction in Streptozotocin-Induced Type 1 and Type 2 Diabetic Cardiomyopathy

  • Chapter
Atherosclerosis, Hypertension and Diabetes

Part of the book series: Progress in Experimental Cardiology ((PREC,volume 8))

Abstract

Diabetes Mellitus is characterised by fasting hyperglycemia and glucose intolerance, due to insulin deficiency, impaired effectiveness of insulin action or both. There is clear evidence of the negative influence of both type 1 diabetes and type 2 diabetes on the prevalence, severity and prognosis of cardiovascular disease. Cardiovascular disease represents the commonest cause of morbidity and mortality within diabetic patients. Human and animal studies have shown that the excess risk of cardiovascular complications cannot be explained by conventional cardiovascular risk factors alone and therefore, the diabetic state itself is likely to account for this alteration in cardiac function. The cellular mechanisms associated with contractile dysfunction and calcium mobilisation will be reviewed with respects to the streptozotocin-induced model of type 1 and type 2 diabetes mellitus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Williams G, Pickup JC. 1999. Handbook of Diabetes London: Blackwell Science Ltd.

    Google Scholar 

  2. Harris M, Zimmet P. 1997. Classification of diabetes mellitus and other categories of glucose intolerance. In International Textbook of Diabetes Mellitus, ed. AK Zimmet, R DeFronzo, and H Keen, pp. 9–23. Chichester: Wiley.

    Google Scholar 

  3. Amos AF, Mccarty DJ, Zimmet P. 1997. The rising global burden of diabetes and its complications: estimates and projections to the year 2010. Diabet Med 14 Suppl 5:S1–S85.

    Google Scholar 

  4. King H, Aubert RE, Herman WH. 1998. Global burden of diabetes, 1995–2025: prevalence, numerical estimates, and projections. Diabetes Care 21:1414–1431.

    Article  Google Scholar 

  5. Schaffer SW 1991. Cardiomyopathy associated with noninsulin-dependent diabetes. Mol Cell Biochem 107:1–20.

    Article  PubMed  CAS  Google Scholar 

  6. Thorsby P, Undlien DE, Berg JP, Thorsby E, Birkeland KI. 1998. Diabetes mellitus--a complex interaction between heredity and environment Tidsskr. Nor Laegeforen. 118:2519–2524.

    CAS  Google Scholar 

  7. Dhalla NS, Pierce GN, Innes IR, Beamish RE. 1985. Pathogenesis of cardiac dysfunction in diabetes mellitus. Can J Cardiol 1:263–281.

    PubMed  CAS  Google Scholar 

  8. Julien J. 1997. Cardiac complications in non-insulin-dependent diabetes mellitus. Journal Of Diabetes And Its Complications 11:123–130.

    Article  PubMed  CAS  Google Scholar 

  9. Schernthaner G. 1996. Cardiovascular mortality and morbidity in type-2 diabetes mellitus. Diabetes Res Clin Pract 31 Suppl:S3–13.

    Article  PubMed  Google Scholar 

  10. Mahgoub MA, Abd-Elfattah AS. 1998. Diabetes mellitus and cardiac function. Mol Cell Biochem 180:59–64.

    Article  PubMed  CAS  Google Scholar 

  11. Raman M, Nesto RW. 1996. Heart disease in diabetes mellitus. Endocrinol Metab Clin North Am 25:425–438.

    Article  PubMed  CAS  Google Scholar 

  12. Laakso M. 1999. Hyperglycemia and cardiovascular disease in type 2 diabetes. Diabetes 48:937–942.

    Article  PubMed  CAS  Google Scholar 

  13. Albanna II, Eichelberger SM, Khoury PR, Witt SA, Standiford DA, Dolan LM, Daniels SR, Kimball TR. 1998. Diastolic dysfunction in young patients with insulin-dependent diabetes mellitus as determined by automated border detection. Journal of The American Society of Echocardiography 11:349–355.

    Article  PubMed  CAS  Google Scholar 

  14. Kiss A, Kertesz T, Koltai MZ, Cserhalmi L, Jermendy G, Kammerer L, Zrinyi T, Pogatsa G. 1988. Left ventricular diastolic function in diabetics. Acta Physiol Hung 71:227–232.

    PubMed  CAS  Google Scholar 

  15. Litwin SE, Raya TE, Anderson PG, Daugherty S, Goldman S. 1990. Abnormal cardiac function in the streptozotocin-diabetic rat. Changes in active and passive properties of the left ventricle. J Clin Invest 86:481–488.

    Article  PubMed  CAS  Google Scholar 

  16. Astorri E, Fiorina P, Gavaruzzi G, Astorri A, Magnati G. 1997. Left ventricular function in insulin-dependent and in non-insulin-dependent diabetic patients: Radionuclide assessment. Cardiology 88:152–155.

    Article  PubMed  CAS  Google Scholar 

  17. Nicolino A, Longobardi G, Furgi G, Rossi M, Zoccolillo N, Ferrara N, Rengo F. 1995. Left-ventricular diastolic filling in diabetes-mellitus with and without hypertension. Am J Hypertens 8:382–389.

    Article  PubMed  CAS  Google Scholar 

  18. Akella AB, Sonnenblick EH, Gulati J. 1996. Alterations in myocardial contractile proteins in diabetes-mellitus. Coronary Artery Disease 7:124–132.

    Article  PubMed  CAS  Google Scholar 

  19. Vanninen E, Mustonen J, Vainio P, Lansimies E, Uusitupa M. 1992. Left ventricular function and dimensions in newly diagnosed non-insulin-dependent diabetes mellitus. Am J Cardiol 70:371–378.

    Article  PubMed  CAS  Google Scholar 

  20. Astorri E, Fiorina P, Contini CA, Albertini D, Magnati G, Astorri A, Lanfredini M. 1997. Isolated and preclinical impairment of left ventricular filling in insulin-dependent and non-insulin-dependent diabetic patients. Clin Cardiol 20:536–540.

    Article  PubMed  CAS  Google Scholar 

  21. Fein FS, Kornstein LB, Strobeck JE, Capasso JM, Sonnenblick EH. 1980. Altered myocardial mechanics in diabetic rats. Circ Res 47:922–933.

    Article  PubMed  CAS  Google Scholar 

  22. Tahiliani AG, Vadlamudi RV, Mcneill JH. 1983. Prevention and reversal of altered myocardial function in diabetic rats by insulin treatment. Can J Physiol Pharmacol 61:516–523.

    Article  PubMed  CAS  Google Scholar 

  23. Collins JF, Pawloski-Dahm C, Davis MG, Ball N, Dorn GW, Walsh RA. 1996. The role of the cytoskeleton in left ventricular pressure overload hypertrophy and failure. J Mol Cell Cardiol 28: 1435–1443.

    Article  PubMed  CAS  Google Scholar 

  24. Howarth FC, Singh J. 1999. Altered handling of calcium during the process of excitation-contraction coupling in the streptozotocin-induced diabetic rat heart¡ªA short review. International Journal Diabetes 7:52–64.

    Google Scholar 

  25. Goto Y, Kakizaki M, Masaki N. 1975. Spontaneous diabetes produced by selective breeding of normal Wistar rats. Proc JPN Acad 51:80–85.

    Google Scholar 

  26. Surwit RS, Feinglos MN, Livingston EG, Kuhn CM, McCubbin JA. 1984. Behavioral manipulation of the diabetic phenotype in ob/ob mice. Diabetes 33:616–618.

    Article  PubMed  CAS  Google Scholar 

  27. Bray GA. 1977. The Zucker-fatty rat: a review. Fed Proc 36:148–153.

    PubMed  CAS  Google Scholar 

  28. Kawano K, Hirashima T, Mori S, Saitoh Y, Kurosumi M, Natori T. 1992. Spontaneous long-term hyperglycemic rat with diabetic complications. Otsuka Long-Evans Tokushima Fatty (OLETF) strain. Diabetes 41:1422–1428.

    Article  PubMed  CAS  Google Scholar 

  29. Ren J, Bode AM. 2000. Altered cardiac excitation-contraction coupling in ventricular myocytes from spontaneously diabetic BB rats. Am J Physiol 279:H238–H244.

    CAS  Google Scholar 

  30. Berdanier CD. 1991. The BHE rat: an animal model for the study of non-insulin-dependent diabetes mellitus. FASEB J 5:2139–2144.

    PubMed  CAS  Google Scholar 

  31. Kalderon B, Gutman A, Levy E, Shafrir E, Adler JH. 1986. Characterization of stages in development of obesity-diabetes syndrome in sand rat (Psammomys obesus). Diabetes 35:717–724.

    Article  PubMed  CAS  Google Scholar 

  32. Portha B, Blondel O, Serradas P, McEvoy R, Giroix MH, Kergoat M, Bailbe D. 1989. The rat models of non-insulin dependent diabetes induced by neonatal streptozotocin. Diabete Metab 15:61–75.

    PubMed  CAS  Google Scholar 

  33. Weir GC, Clore ET, Zmachinski CJ, Bonner-Weir S. 1981. Islet secretion in a new experimental model for non-insulin-dependent diabetes. Diabetes 30:590–595.

    Article  PubMed  CAS  Google Scholar 

  34. Schaffer SW, Allo S, Punna S, White T. 1991. Defective response to cAMP-dependent protein kinase in non-insulin-dependent diabetic heart. Am J Physiol 261:E369–E376.

    PubMed  CAS  Google Scholar 

  35. Ward WK, Beard JC, Halter JB, Pfeifer MA, Porte DJ. 1984. Pathophysiology of insulin secretion in non-insulin-dependent diabetes mellitus. Diabetes Care 7:491–502.

    Article  PubMed  CAS  Google Scholar 

  36. Schaffer SW, Wilson GL. 1993. Insulin resistance and mechanical dysfunction in hearts of Wistar rats with streptozotocin-induced non-insulin-dependent diabetes mellitus. Diabetologia 36:195–199.

    Article  PubMed  CAS  Google Scholar 

  37. Barry WH, Bridge JHB. 1993. Intracellular calcium homeostasis in cardiac myocytes. Circulation 87(6):1806–1815.

    Article  PubMed  CAS  Google Scholar 

  38. Lipp P, Niggli E. 1994. Sodium current-induced calcium signals in isolated guinea-pig ventricular myocytes. J Physiol 474:439–446.

    PubMed  CAS  Google Scholar 

  39. Leblanc N, Hume JR. 1990. Sodium current-induced release of calcium from cardiac sarcoplasmic reticulum. Science 248:372–376.

    Article  PubMed  CAS  Google Scholar 

  40. Sipido KR, Carmeliet E, Pappano A. 1995. Na+ current and Ca2+ release from the sarcoplasmic reticulum during action potentials in guinea-pig ventricular myocytes. J Physiol 489:1–17.

    PubMed  CAS  Google Scholar 

  41. Sham JSK, Cleemann L, Morad M. 1992. Gating of the cardiac Ca2+ release channel: The role of Na+ current and Na+¡ªCa+ exchange. Science 255:850–853.

    Article  PubMed  CAS  Google Scholar 

  42. Beuckelmann DJ, Wier WG. 1988. Mechanism of release of calcium from sarcoplasmic reticulum of guinea-pig cardiac cells J Physiol 405:233–255.

    PubMed  CAS  Google Scholar 

  43. Cannell MB, Berlin JR, Lederer WJ. 1987. Effect of membrane potential changes on the calcium transient in single rat cardiac muscle cells. Science 238:1419–1423.

    Article  PubMed  CAS  Google Scholar 

  44. Eisner DA, Trafford AW. 2000. No Role for the Ryanodine Receptor in Regulating Cardiac Contraction? News Physiol Sci 15:275–279.

    PubMed  CAS  Google Scholar 

  45. Fabiato A. 1983. Calcium-induced release of calcium from the cardiac sarcoplasmic reticulum. Am J Physiol 14:C1–C14.

    Google Scholar 

  46. Litwin SE, Li J, Bridge JH. 1998. Na+/Ca2+ exchanger ge and the trigger for sarcoplasmic reticulum Ca release: studies in adult rabbit ventricular myocytes. Biophys J 75:359–371.

    Article  PubMed  CAS  Google Scholar 

  47. Muller P. 1965. Ouabain effects on cardiac contraction, action potential and cellular potassium. Circ Res 17:46–56.

    Article  Google Scholar 

  48. Levi AJ, Ferrier GR. 1997. Biophys J 72 (2):A161-Tu-Posl30 (Abstr.).

    Google Scholar 

  49. Lipp P, Laine M, Tovey SC, Burrell KM, Berridge MJ, Li W, Bootman MD. 2000. Functional InsP3 receptors that may modulate excitation-contraction coupling in the heart. Curr Biol 10:939–942.

    Article  PubMed  CAS  Google Scholar 

  50. Bers DM. 1991. Excitation-contraction coupling and cardiac contractile force. Dordrecht, The Netherlands: Kluwer Academic Publishers.

    Google Scholar 

  51. Balke CW, Egan TM, Wier WG. 1994. Processes that remove calcium from the cytoplasm during excitation-contraction coupling in intact rat heart cells J Physiol 474:447–462.

    PubMed  CAS  Google Scholar 

  52. Barcenas-Ruiz L, Beuckelmann DJ, Weir WG. 1987. Sodium-calcium exchange in the heart: Membrane currents and changes in [Ca2+]i. Science 238(4834), 1720–1722.

    Article  PubMed  CAS  Google Scholar 

  53. Jorgensen AO, Shen ACY, Daly P, MacLennan DH. 1982. Localization of Ca2+ Mg2+-ATPase of the sarcoplasmic reticulum in adult rat papillary muscle. J Cell Biol 93:883–892.

    Article  PubMed  CAS  Google Scholar 

  54. Regan TJ, Ettinger PO, Khan MIJesrani MU, Lyons MM, Oldewurtel HA, Weber M. 1974. Altered myocardial function and metabolism in chronic diabetes mellitus without ischemia in dogs. Circ Res 35:222–237.

    Article  CAS  Google Scholar 

  55. Fein FS, Sonnenblick EH. 1994. Diabetic cardiomyopathy. Cardiovasc Drugs Ther 8:65–73.

    Article  PubMed  CAS  Google Scholar 

  56. Lagadic-Gossman D, Jourdon P, Feuvray D. 1994. Cardiac contractile activity and action-potential in spontaneously diabetic bb rats. Sciences Et Techniques De L Animal De Laboratoire 19:207–212.

    Google Scholar 

  57. Cameron NE, Cotter MA, Robertson S. 1989. Contractile properties of cardiac papillary muscle in streptozotocin-diabetic rats and the effects of aldose reductase inhibition. Diabetologia 32: 365–370.

    Article  PubMed  CAS  Google Scholar 

  58. Cotter MA, Cameron NE, Robertson S. 1992. Polyol pathway-mediated changes in cardiac muscle contractile properties: studies in streptozotocin-diabetic and galactose-fed rats. Exp Physiol 77: 829–838.

    PubMed  CAS  Google Scholar 

  59. Ren J,Walsh MF, Hamary M, Sowers JR, Brown RA. 1999. Augmentation of the inotropic response to insulin in diabetic rat hearts. Life Sci 65:369–380.

    Article  PubMed  CAS  Google Scholar 

  60. Yu Z, Tibbits GF, Mcneill JH. 1994. Cellular functions of diabetic cardiomyocytes: contractility, rapid-cooling contracture, and ryanodine binding. Am J Physiol 266:H2082–H2089.

    PubMed  CAS  Google Scholar 

  61. Ren J, Davidoff AJ. 1997. Diabetes rapidly induces contractile dysfunctions in isolated ventricular myocytes. Am J Physiol 41:H148–H158.

    Google Scholar 

  62. Okayama H, Hamada M, Hiwada K. 1994. Contractile dysfunction in the diabetic-rat heart is an intrinsic abnormality of the cardiac myocyte. Clin Sci (Colch.) 86:257–262.

    CAS  Google Scholar 

  63. Howarth FC, Qureshi MA, Bracken NK, Winlow W, Singh J. 2001. Time-dependent effects of strptozotocin-induced diabetes on contraction of ventricular myocytes from rat heart. Emirates Medical Journal 19:35–41.

    Google Scholar 

  64. Wold LE, Relling DP, Colligan PB, Scott GI, Hintz KK, Ren BH, Epstein PN, Ren J. 2001. Characterization of contractile function in diabetic hypertensive cardiomyopathy in adult rat ventricular myocytes. J Mol Cell Cardiol 33:1719–1726.

    Article  PubMed  CAS  Google Scholar 

  65. Ren J. 2000. Attenuated cardiac contractile responsiveness to insulin-like growth factor I in ven-tricular myocytes from biobreeding spontaneous diabetic rats. Cardiovasc Res 46:162–171.

    Article  PubMed  CAS  Google Scholar 

  66. Ishitani T, Hattori Y, Sakuraya F, Onozuka H, Makino T, Matsuda N, Gando S, Kemmotsu O. 2001. Effects of Ca2+ sensitizers on contraction, [Ca2+]i transient and myofilament Ca2+ sensitivity in diabetic rat myocardium: potential usefulness as inotropic agents. J Pharmacol Exp Ther 298:613–622.

    PubMed  CAS  Google Scholar 

  67. Schaffer SW, Tan BH, Wilson GL. 1985. Development of a cardiomyopathy in a model of noninsulin-dependent diabetes. Am J Physiol 248:H179–H185.

    PubMed  CAS  Google Scholar 

  68. Schaffer SW, Mozaffari MS, Artman M, Wilson GL. 1989. Basis for myocardial mechanical defects associated with non-insulin-dependent diabetes. Am J Physiol 256:E25–E30.

    Google Scholar 

  69. Howarth FC, Qureshi MA. 2002. Characteristics of ventricular myocyte shortening after administration of streptozotocin to neonatal rats. Archives of physiology and biochemistry (in press).

    Google Scholar 

  70. Trautwein W, Hescheler J. 1990. Regulation of cardiac L-type calcium current by phosphorylation and G proteins. Ann Rev Physiol 52:257–274.

    Article  CAS  Google Scholar 

  71. Kranias EG, Solaro RJ. 1982. Phosphorylation of Troponin I and phospholamban during cate-cholamin stimulation of rabbit heart. Nature 298(5870): 182–184.

    Article  PubMed  CAS  Google Scholar 

  72. Tada M, Katz AM. 1982. Phosphorylation of the sarcoplasmic reticulum and sarcolemma. Annual Review of Physiology 44:401–423.

    Article  PubMed  CAS  Google Scholar 

  73. Tamada A, Hattori Y, Houzen H, Yamada Y, Sakuma I, Kitabatake A, Kanno M. 1998. Effects of beta-adrenoceptor stimulation on contractility, [Ca2+]i and Ca2+ current in diabetic rat cardiomy-ocytes. Am J Physiol 43:H1849–H1857.

    Google Scholar 

  74. Ha T, Kotsanas G, Wendt I. 1999. Intracellular Ca2+ and adrenergic responsiveness of cardiac myocytes in streptozotocin-induced diabetes. Clin Exp Pharmacol Physiol 26:347–353.

    Article  PubMed  CAS  Google Scholar 

  75. Sellers DJ, Chess-Williams R. 2001. The effect of streptozotocin-induced diabetes on cardiac beta-adrenoceptor subtypes in the rat. J Auton Pharmacol 21:15–21.

    Article  PubMed  CAS  Google Scholar 

  76. Atkins FL, Dowell RT, Love S. 1985. beta-Adrenergic receptors, adenylate cyclase activity, and cardiac dysfunction in the diabetic rat. J Cardiovasc Pharmacol 7:66–70.

    Article  PubMed  CAS  Google Scholar 

  77. Gando S, Hattori Y, Akaishi Y, Nishihira J, Kanno M. 1997. Impaired contractile response to beta adrenoceptor stimulation in diabetic rat hearts: Alterations in beta adrenoceptors-G protein adenylate-cyclase system and phospholamban phosphorylation. J Pharmacol Exp Ther 282(1): 475–484.

    PubMed  CAS  Google Scholar 

  78. Heyliger CE, Pierce GN, Singal PK, Beamish RE, Dhalla NS. 1982. Cardiac alpha-and beta-adrenergic receptor alterations in diabetic cardiomyopathy. Basic Res Cardiol 77:610–618.

    Article  PubMed  CAS  Google Scholar 

  79. Horackova M, Murphy MG. 1988. Effects of chronic diabetes mellitus on the electrical and contractile activities, 45Ca2+ transport, fatty acid profiles and ultrastructure of isolated rat ventricular myocytes. Pflugers Arch 411:564–572.

    Article  PubMed  CAS  Google Scholar 

  80. Gando S. 1994. Pharmacological studies on alterations in myocardial beta-adrenoceptors and their intracellular signal transduction in experimental diabetic rats. Hokkaido Igaku Zasshi 69:1140–1153.

    PubMed  CAS  Google Scholar 

  81. Nishio Y, Kashiwagi A, Kida Y, Kodama M, Abe N, Saeki Y, Shigeta Y. 1988. Deficiency of cardiac beta-adrenergic receptor in streptozocin-induced diabetic rats. Diabetes 37:1181–1187.

    Article  PubMed  CAS  Google Scholar 

  82. Menotti A, Blackburn H, Seccareccia F, Kromhout D, Nissinen A, Aravanis C, Giampaoli S, Mohacek I, Nedeljkovic S, Toshima H. 1997. The relation of chronic diseases to all-cause mortality risk¡ªthe Seven Countries Study. Ann Med 29:135–141.

    Article  PubMed  CAS  Google Scholar 

  83. Austin CE, Chess-Williams R. 1991. Diabetes-induced changes in cardiac beta-adrenoceptor responsiveness: effects of aldose reductase inhibition with ponalrestat. Br J Pharmacol 102:478–482.

    Article  PubMed  CAS  Google Scholar 

  84. Ramanadham S, Tenner TEJ. 1987. Alterations in the myocardial beta-adrenoceptor system of streptozotocin-diabetic rats. Eur J Pharmacol 136:377–389.

    Article  PubMed  CAS  Google Scholar 

  85. Schaffer SW, Mozaffari M. 1996. Abnormal mechanical function in diabetes: relation to myocardial calcium handling. Coron Artery Dis 7:109–115.

    Article  PubMed  CAS  Google Scholar 

  86. Golden KL, Ren J, O’Connor J, Dean A, DiCarlo SE, Marsh JD. 2001. In vivo regulation of Na/Ca exchanger expression by adrenergic effectors. Am J Physiol Heart Circ Physiol 280: H1376–H1382.

    PubMed  CAS  Google Scholar 

  87. Lagadic-Gossmann D, Buckler KJ, Le Prigent K, Feuvray D. 1996. Altered Ca2+ handling in ventricular myocytes isolated from diabetic rats. Am J Physiol 270:H1529–H1537.

    PubMed  CAS  Google Scholar 

  88. Hayashi H, Noda N. 1997. Cytosolic Ca2+ concentration decreases in diabetic rat myocytes. Cardiovasc Res 34:99–103.

    Article  PubMed  CAS  Google Scholar 

  89. Noda N, Hayashi H, Miyata H, Suzuki S, Kobayashi A, Yamazaki N. 1992. Cytosolic Ca2+ concentration and pH of diabetic rat myocytes during metabolic inhibition. J Mol Cell Cardiol 24: 435–446.

    Article  PubMed  CAS  Google Scholar 

  90. Yu Z, Quamme GA, Mcneill JH. 1994. Depressed [Ca2+]i responses to isoproterenol and cAMP in isolated cardiomyocytes from experimental diabetic rats. Am J Physiol 266:H2334–H2342.

    PubMed  CAS  Google Scholar 

  91. Allo SN, Lincoln TM, Wilson GL, Green FJ, Watanabe AM, Schaffer SW 1991. Non-insulin-dependent diabetes-induced defects in cardiac cellular calcium regulation. Am J Physiol 260: C1165–C1171.

    PubMed  CAS  Google Scholar 

  92. Katoh H, Noda N, Hayashi H, Satoh H, Terada H, Ohno R, Yamazaki N. 1995. Intracellular sodium concentration in diabetic rat ventricular myocytes. Jpn Heart J 36:647–656.

    Article  PubMed  CAS  Google Scholar 

  93. Pierce GN, Ramjiawan B, Dhalla NS, Ferrari R. 1990. Na+/H+ exchange in cardiac sarcolemmal vesicles isolated from diabetic rats. Am J Physiol 258:H255–H261.

    PubMed  CAS  Google Scholar 

  94. kato K, Chapman DC, Rupp H, Lukas A, Dhalla NS. 1999. Alterations of heart function and Na+/K+-ATPase activity by etomoxir in diabetic rats. J Appl Physiol 86:812–818.

    PubMed  CAS  Google Scholar 

  95. Yu JZ, Quamme GA, Mcneill JH. 1995. Altered [Ca2+]i Mobilization in diabetic cardiomyocytes¡ª responses to caffeine, KC1, ouabain, and ATP. Diabetes Research and Clinical Practice 30:9–20.

    Article  PubMed  CAS  Google Scholar 

  96. Noda N, Hayashi H, Satoh H, Terada H, Hirano M, Kobayashi A, Yamazaki N. 1993. Ca2+ transients and cell shortening in diabetic rat ventricular myocytes. Jpn Circ J 57:449–457.

    Article  PubMed  CAS  Google Scholar 

  97. Takeda N, Dixon IC, Hata T, Elimban V, Shah KR, Dhalla NS. 1996. Sequence of alterations in subcellular organelles during the development of heart dysfunction in diabetes. Diabetes Research and Clinical Practice 30:S-S.

    Article  Google Scholar 

  98. Heyliger CE, Prakash A, Mcneill JH. 1987. Alterations in cardiac sarcolemmal Ca2+ pump activity during diabetes mellitus. Am J Physiol 252:H540–H544.

    PubMed  CAS  Google Scholar 

  99. Makino N, Dhalla KS, Elimban V, Dhalla NS. 1987. Sarcolemmal Ca2+ transport in streptozotocininduced diabetic cardiomyopathy in rats. Am J Physiol 253:E202–E207.

    PubMed  CAS  Google Scholar 

  100. Bergh CH, Hjalmarson A, Sjogren KG, Jacobsson B. 1988. The effect of diabetes on phosphatidylinositol turnover and calcium influx in myocardium. Horm Metab Res 20:381–386.

    Article  PubMed  CAS  Google Scholar 

  101. Wang DW, Kiyosue T, Shigematsu S, Arita M. 1995. Abnormalities of K+ and Ca2+ currents in ventricular myocytes from rats with chronic diabetes. Am J Physiol 269:H1288–H1296.

    PubMed  CAS  Google Scholar 

  102. Chattou S, Diacono J, Feuvray D. 1999. Decrease in sodium-calcium exchange and calcium currents in diabetic rat ventricular myocytes. Acta Physiol Scand 166:137–144.

    Article  PubMed  CAS  Google Scholar 

  103. Schneider JA, Sperelakis N. 1975. Slow Ca2+ and Na+ responses induced by isoproterenol and methylxanthines in isolated perfused guinea-pig hearts exposed to elevated K. J Mol Cell Cardiol 7:249–273.

    Article  PubMed  CAS  Google Scholar 

  104. Jourdon P, Feuvray D. 1993. Calcium and potassium currents in ventricular myocytes isolated from diabetic rats. J Physiol (Lond.) 470:411–429.

    CAS  Google Scholar 

  105. Sperelakis N. 1988. Regulation of calcium slow channels of cardiac muscle by cyclic nucleotides and phosphorylation. J Mol Cell Cardiol 20(Suppl)2:75–105.

    Article  Google Scholar 

  106. Hescheler J, Kameyama M, Trautwein W, Mieskes G, Soling HD. 1987. Regulation of the cardiac calcium channel by protein phosphatases. Eur J Biochem 165:261–266.

    Article  PubMed  CAS  Google Scholar 

  107. Allo SN, Schaffer SW. 1990. Defective sarcolemmal phosphorylation associated with noninsulin-dependent diabetes. Biochim Biophys Acta 1023:206–212.

    Article  PubMed  CAS  Google Scholar 

  108. Bers DM. 2002. Cardiac excitaion-contraction coupling. Nature 415:198–205.

    Article  PubMed  CAS  Google Scholar 

  109. Hattori Y, Matsuda N, Kimura J, Ishitani T, Tamada A, Gando S, Kemmotsu O, Kanno M. 2000. Diminished function and expression of the cardiac Na+/Ca2+ exchanger in diabetic rats: implication in Ca2+ overload. J Physiol 527 Pt 1:85–94.

    Google Scholar 

  110. Kato M, Kako KJ. 1988. Na+/Ca2+ exchange of isolated sarcolemmal membrane: effects of insulin, oxidants and insulin deficiency. Mol Cell Biochem 83:15–25.

    Article  PubMed  CAS  Google Scholar 

  111. Teshima Y, Takahashi N, Saikawa T, Hara M, Yasunaga S, Hidaka S, Sakata T. 2000. Diminished expression of sarcoplasmic reticulum Ca2+-ATPase and ryanodine sensitive Ca2+ Channel mRNA in streptozotocin-induced diabetic rat heart. J Mol Cell Cardiol 32:655–664.

    Article  PubMed  CAS  Google Scholar 

  112. Schaffer SW, Ballard-Croft C, Boerth S, Allo SN. 1997. Mechanisms underlying depressed Na+/Ca2+ exchanger activity in the diabetic heart. Cardiovasc Res 34:129–136.

    Article  PubMed  CAS  Google Scholar 

  113. Giles TD, Ouyang J, Kerut EK, Given MB, Allen GE, McIlwain EF, Greenberg SS. 1998. Changes in protein kinase C in early cardiomyopathy and in gracilis muscle in the BB/Wor diabetic rat. Am J Physiol 274:H295–H307.

    PubMed  CAS  Google Scholar 

  114. Saltiel AR. 1994. The paradoxical regulation of protein phosphorylation in insulin action. FASEB J 8:1034–1040.

    PubMed  CAS  Google Scholar 

  115. Netticadan T, Temsah RM, Kent A, Elimban V, Dhalla NS. 2001. Depressed levels of Ca2+ cycling proteins may underlie sarcoplasmic reticulum dysfunction in the diabetic heart. Diabetes 50:2133–2138.

    Article  PubMed  CAS  Google Scholar 

  116. Rousseau E, Meissner G. 1987. Single cardiac sarcoplasmic reticulum Ca2+-release channel: activation by caffeine. Am J Physiol 256:H328–H333.

    Google Scholar 

  117. Woodbury LA, Hecht HH. 1952. Effects of cardiac glycosides upon the electrical activity of single ventricular fibres of the frog heart, and their relation to the digitalis effect of the electrocardiogram. Circulation 6:172–182.

    Article  PubMed  CAS  Google Scholar 

  118. Bouchard RA, Bose D. 1991. Influence of experimental diabetes on sarcoplasmic reticulum function in rat ventricular muscle. Am J Physiol 260:H341–H354.

    PubMed  CAS  Google Scholar 

  119. Ganguly PK, Pierce GN, Dhalla KS, Dhalla NS. 1983. Defective sarcoplasmic reticular calcium transport in diabetic cardiomyopathy. Am J Physiol 244:E528–E535.

    PubMed  CAS  Google Scholar 

  120. Kim HW, Ch YS, Lee HR, Park SY, Kim YH. 2001. Diabetic alterations in cardiac sarcoplasmic reticulum Ca2+-ATPase and phospholamban protein expression. Life Sci 70:367–379.

    Article  PubMed  CAS  Google Scholar 

  121. Russ M, Reinauer H, Eckel J. 1991. Diabetes-induced decrease in the mRNA coding for sar-coplasmic reticulum Ca2+-ATPase in adult rat cardiomyocytes. Biochem Biophys Res Commun 178:906–912.

    Article  CAS  Google Scholar 

  122. Lopaschuk GD, Tahiliani AG, Vadlamudi RV, Katz S, Mcneill JH. 1983. Cardiac sarcoplasmic reticulum function in insulin-or carnitine-treated diabetic rats. Am J Physiol 245:H969–H976.

    PubMed  CAS  Google Scholar 

  123. Misra T, Gilchrist JS, Russell JC, Pierce GN. 1999. Cardiac myofibrillar and sarcoplasmic reticulum function are not depressed in insulin-resistant JCR:LA-cp rats. Am J Physiol 276:H1811–H1817.

    PubMed  CAS  Google Scholar 

  124. Zarain-Herzberg A, Yano K, Elimban V, Dhalla NS. 1994. Cardiac sarcoplasmic reticulum Ca2+-ATPase expression in streptozotocin-induced diabetic rat heart. Biochem Biophys Res Commun 203:113–120.

    Article  PubMed  CAS  Google Scholar 

  125. Satoh N, Sato T, Shimada M, Yamada K, Kitada Y. 2001. Lusitropic effect of MCC-135 is associated with improvement of sarcoplasmic reticulum function in ventricular muscles of rats with diabetic cardiomyopathy. J Pharmacol Exp Ther 298:1161–1166.

    PubMed  CAS  Google Scholar 

  126. Zhong Y, Ahmed S, Grupp IL, Matlib MA. 2001. Altered SR protein expression associated with contractile dysfunction in diabetic rat hearts. Am J Physiol 281:H1137–H1147.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bracken, N.K., Singh, J., Winlow, W., Howarth, F.C. (2003). Mechanisms Underlying Contractile Dysfunction in Streptozotocin-Induced Type 1 and Type 2 Diabetic Cardiomyopathy. In: Pierce, G.N., Nagano, M., Zahradka, P., Dhalla, N.S. (eds) Atherosclerosis, Hypertension and Diabetes. Progress in Experimental Cardiology, vol 8. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-9232-1_30

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-9232-1_30

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4850-4

  • Online ISBN: 978-1-4419-9232-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics