Skip to main content

Dyslipoproteinemia and Fibrinolysis

  • Chapter
  • First Online:
Atherosclerosis, Hypertension and Diabetes

Part of the book series: Progress in Experimental Cardiology ((PREC,volume 8))

Abstract

Fibrinolysis plays critical roles in the clearance of fibrin clots in vasculature, tissue modeling, embryo development and wound healing. Reduced fibrinolytic activity has been frequently found in patients with ischemic heart disease (IHD) and diabetes mellitus. Dys-lipoproteinemia, characterized by increased low density lipoprotein (LDL), very low density lipoprotein (VLDL), lipoprotein (a) [Lp(a)] and decreased high density lipoprotein (HDL), is a common biochemical finding in IHD and diabetes. Previous studies by other groups and ours demonstrated that LDL, VLDL, Lp(a) and their oxidatively modified forms increased the generation of plasminogen activator inhibitor-1 (PAI-1), the major physiological inhibitor for fibrinolysis, from vascular endothelial cells (EC). LDL and Lp(a) reduced the release of tissue plasminogen activator (tPA) from EC. Our group recently demonstrated that glycation enhanced the effects of LDL and Lp(a) on the generation of fibrinolytic regulators from EC. Co-treatment with antixidants or HDL may normalize glycated LDL-induced changes in the fibrinolytic regulators from EC. LDL and VLDL isolated from diabetic patients induced greater increases in PAI-1 generation and further decreased tPA release from EC compared corresponding lipoproteins from healthy subjects. VLDL-responsive element was found in —672/—657 bp region of the PAI-1 promoter. The activation of PKC-ß isoform is required for LDL, Lp(a) and their oxidized forms induced PAI-1 production in EC. This review sum-maries the recent findings on the impact and regulatory mechanism for lipoproteins-induced production of fibrinolytic regulators in vascular cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Folsom AR. 2000. Fibrinolytic factors and atherothrombotic events: epidemiological evidence. Ann Med 32 Suppl 1:85–91.

    PubMed  CAS  Google Scholar 

  2. Assmann G, Schulte H. 1993. Results and Conclusions of the prospective cardiovascular Munster (PROCAM) study. In Lipid metabolism disorders and coronary heart disease. Ed. G. Assmann. 19–67. Munich. MMV Medizin Verlag.

    Google Scholar 

  3. Festa A, Agostino R Jr, Mykkanen L, Tracy R, Howard BV, HafFner SM. 1999. Low density lipopro-tein particle sizes is inversely related to plasminogin activator inhibitor-1 levels. The insulin resis-tance atherosclerosis study. Arterioscler Thromb Vasc Biol 19:605–610.

    Article  PubMed  CAS  Google Scholar 

  4. Breckenridge WC. 1990. The role of lipoproteins and apolipoproteins in predication of coronary heart disease risk. Clin Invest Med 13:196–201.

    PubMed  CAS  Google Scholar 

  5. Austin MA. 1999. Epidemiology of hypertriglyceridemia and cardiovascular disease. Am J Cardiol 83:13F–16F.

    Article  PubMed  CAS  Google Scholar 

  6. Crouse JR III, Furberg CD. 2000. Treatment of dyslipidemia. Room for improvement. Arterioscler Thromb Vasc Biol 20:2333–2335.

    Article  PubMed  Google Scholar 

  7. Kennel WB, Wilson PW. 1997. Efficacy of lipid profiles in prediction of coronary artery disease. Am Heart J 1992;124:768–74.

    Article  Google Scholar 

  8. Barter PJ, Rye RA, Clay MA. Anti-atherogenic effects of high density lipoproteins. Atherosclerosis 134:285–291.

    Google Scholar 

  9. Ginsberg HN. 1991. Lipoprotein physiology in nondiabetic and diabetic states. Relationship to ath-erosclerosis. Diabetic Care 14:839–855.

    Article  CAS  Google Scholar 

  10. Austin MA, Breslow JL, Hennekens CH, Buring JE, Willett WC, Krauss RM. 1987. Low-density lipoprotein subclass patterns and risk of myocardial infraction. JAMA 260:1917–1921.

    Article  Google Scholar 

  11. Stewart JM, Kilpatrick ES, Cathcart S, Small M, Domiiniczak MH. 1994. Low-density lipopro-tein particle size in type 2 diabetic patients and age matched control. Ann Clin Biochem 31:153–159.

    PubMed  Google Scholar 

  12. Austin MA, Edwards KL. 1996. Small dense low density lipoproteins, the insulin resistance syndrome and noninsulin-dependent diabetes. Curr Opin Lipidol 7:167–171.

    Article  PubMed  CAS  Google Scholar 

  13. James RW, Pometta D. 1991. The distribution profiles of very low density and low density lipopro-teins in poorly-controlled mail, type 2 (non-insulin-dependent) diabetic patients. Diabetologia 34:246–252.

    Article  PubMed  CAS  Google Scholar 

  14. Laakso M. 1997. Dyslipidemia, morbidity, and mortality in non-insulin-dependent diabetes mellitus. Lipoproteins and coronary heart disease in non-insulin-dependent diabetes mellitus. J Diab Complic 11:137–144.

    Article  CAS  Google Scholar 

  15. Krawczuk-Rybak M, Wojtowicz J, Urban M. 1991. State of lipid metabolism in children and ado-lescents with insulin-dependent diabetes. I. Evaluation of lipoprotein (A) behavior in children and adolescents with insulin-dependent diabetes. Endokrynol-Pol 42:437–445.

    PubMed  CAS  Google Scholar 

  16. Irish AB, Simons LS, Simons J. 1992. Lipoprotein(a) concentration in diabetes: relationship to pro-teinuria and diabetes control. Aust NZ J Med 22:329–333.

    Article  CAS  Google Scholar 

  17. Heller FR, Jamart J, Honore P, Derue G, Novik V, Galanti L, Parfonry A, Hondekijn JC, Buysschaert M. 1993. Serum lipoprotein(a) in patients with diabetes mellitus. Diabetes Care 16:819–823.

    Article  PubMed  CAS  Google Scholar 

  18. Murakami J, Kumasaka K, Kawano K, Murakami T, Hayashi Y, Arakawa Y. 1994. Lp(a) serum con-centrations in diabetes mellitus. Rinsho-Byori 42:1273–1278.

    PubMed  CAS  Google Scholar 

  19. Groop PH, Viberti GC, Elliott TG, Firedman R, Mackie A, Ehnholm C, Jauhiainen M, Taskinen MR. 1994. Lipoprotein(a) in type 1 diabetic patients with renal disease. Diabet Med 11:961–967.

    Article  PubMed  CAS  Google Scholar 

  20. James RW, Boemi M, Sirolla C, Amadio L, Fumelli P, Pometta P. 1995. Lipoprotein(a) and vascular disease in diabetic patients. Diabetologia 38:711–714.

    Article  PubMed  CAS  Google Scholar 

  21. Gall MA, Rossing P, Hommel E, Voldsgaard AI, Andersen P, Nielsen FS, Dyerberg J, Parving HH. 1992. Apolipoprotein(a) in insulin-dependent diabetic patients with and without diabetic nephropa-thy. Scand J Clin Lab Invest 52:513–521.

    Article  PubMed  CAS  Google Scholar 

  22. Steinberg D, Parthasarathy S, Carew TE, Khoo JC, Witztum JL. 1989. Beyond cholesterol. Modifi-cations of low-density lipoprotein that increase its atherogenicity. N Engl J Med 320:915–24.

    Article  PubMed  CAS  Google Scholar 

  23. Wada H, Kaneko T, Wakita Y, Minamikawa K, Nagaya S, Tamaki S, Deguchi K, Shirakawa S. 1994. Effect of lipoproteins on tissue factor activity and PAI-II antigen in human monocytes and macrophages. Int J Cardiol 47(1 Suppl):S21–S25.

    Article  PubMed  CAS  Google Scholar 

  24. Itabe H, Takeshima E, Iwasaki H, Kimura J, Yoshida Y, Imanaka T, Takano T. 1994. A monoclonal antibody against oxidized lipoprotein recognizes foam cells in atherosclerotic lesions. Complex for-mation of oxidized phosphatidylcholines and polypeptides. J Biol Chem 269:15274–15279.

    PubMed  CAS  Google Scholar 

  25. Erkkila AT, Narvanen O, Lehto S, Uusitupa MI, Yla-Herttuala S. 2000. Autoantibodies against oxi-dized low-density lipoprotein and cardiolipin in patients with coronary heart disease. Arterioscler Thromb Vasc Biol 20:204–209.

    Article  PubMed  CAS  Google Scholar 

  26. Lyons TJ, Baynes JW, Patrick JS, Colwell JA, Lopes-Virella MF. 1986. Glycosylation of low density lipoprotein in patients with type 1 (insulin-dependent) diabetes: correlations with other parameters of glycaemic control. Diabetologia. 29:685–689.

    Article  PubMed  CAS  Google Scholar 

  27. Lyons TJ. 1993. Glycation and oxidation: a role in the pathogenesis of atherosclerosis. Am J Cardiol 71:26B–31B.

    Article  PubMed  CAS  Google Scholar 

  28. Shen GX. 1998. Vascular cell-derived fibrinolytic regulators and atherothrombotic vascular disorders. Int J Mol Med 1:399–408.

    PubMed  CAS  Google Scholar 

  29. Saksela O, Rifkin DB. 1988. Cell-associated plasminogen activation: regulation and physiological functions. Ann Rev Cell Biol 4:93–126.

    Article  PubMed  CAS  Google Scholar 

  30. Hamsten A, De Faire U, Walldius G, Dahlen G, Szamosi A, Blomback M, Landou C, Wiman B. 1987. Plasminogen activator inhibitor in plasma: risk factor for recurrent myocardial infarction. Lancet 2:3–9.

    Article  PubMed  CAS  Google Scholar 

  31. Cortellaro M, Cafrancesco E, Boschetti C, Mussoni L, Ponati MB, Cardillo M, Garbrielli L, Lombard B, Specchia G. 1993. Increased fibrin turnover and high PAI-1 antigen as predicator of ischemic event in atherosclerotic patients. The PLAT group. Arterioscler Thromb Vasc Biol 13:1412–1417.

    Article  CAS  Google Scholar 

  32. Amman V, Nilsson A, Stemme S, Risberg B, Rymo L. 1994. Expression of plasminogen activator inhibitor-1 mRNA in healthy, atherosclerotic and thrombotic arteries and veins. Thromb Res 74:487–499.

    Article  Google Scholar 

  33. Geiger M, Binder BR. 1988. Plasminogen activation in diabetes mellitus. Kinetics of plasmin for-mation with tissue plasminogen activator and plasminogen from individual diabetic donors and with in vitro glycosylated plasminogen. Enzyme 40:149–157.

    PubMed  CAS  Google Scholar 

  34. Auwerx J, Bouillon R, Collen D, Geboers J. 1988. Tissue-type plasminogen activator antigen and plasminogen activator inhibitor in diabetes mellitus. Arteriosclerosis 8:68–72.

    Article  PubMed  CAS  Google Scholar 

  35. Jokl R, Klein RL, Lopes-Virella MF, Colwell JA. 1995. Release of platelet plasminogen activator inhibitor 1 in whole blood is increased in patients with type II diabetes. Diabetes Care 18:1150–1155.

    Article  PubMed  CAS  Google Scholar 

  36. Matsuo T, Kadowaki S, Okada K, Matsuo O. 1990. Activity of tissue plasminogen activator and plasminogen activator inhibitor in noninsulin-dependent diabetes mellitus. J Diabet Complications 4:119–121.

    Article  PubMed  CAS  Google Scholar 

  37. Gough SC, Rice PJ, McCormack L, Chapman C, Grant PJ. 1993. The relationship between plas-minogen activator inhibitor-1 and insulin resistance in newly diagnosed type 2 diabetes mellitus. Diabet Med 10:638–642.

    Article  PubMed  CAS  Google Scholar 

  38. Vicari AM, Vigano-D’Angelo S, Testa S, Comi G, Galardi G, Orsi E, D’Angelo A. 1992. Normal tissue plasminogen activator and plasminogen activator inhibitor activity in plasma from patients with type 1 diabetes mellitus. Horm Metab Res 24:516–519.

    Article  PubMed  CAS  Google Scholar 

  39. Ceriello A, Quatraro A, Marchi E, Barbanti M, Giugliano D. 1993. Impaired fibrinolytic response toincreased thrombin activation in type 1 diabetes mellitus: effects of the glycosaminoglycan sulodex-ide. Diabete Metab 19:225–259.

    PubMed  CAS  Google Scholar 

  40. Carmassi F, Morale M, Puccett R, De-Negre F, Monzani F, Navalesi R, Mariani G. 1992. Coagula-tion and fibrinolytic system impairment in insulin dependent diabetes mellitus. Thromb Res 67: 643–654.

    Article  PubMed  CAS  Google Scholar 

  41. Davi G, Violi F, Catalano I, Giammarresi C, Putignano E, Nicolosi G, Barbagallo M, Notarbartolo A. 1991. Increased plasminogen activator inhibitor antigen levels in diabetic patients with stable angina. Blood Coagul Fibrinolysis 2:41–45.

    Article  PubMed  CAS  Google Scholar 

  42. Nagi K, Mohamed AV, Jain SK, Walji S, Yudlkin JS. 1996. Plasminogen activator inhibitor (PAI-1) activity is elevated in Asian and Caucasian subjects with non-insulin-dependent (type-2) diabetes but not in those with impaired glucose tolerance (IGT) or non-diabetic Asians. Diabet Med 13: 59–64.

    Article  PubMed  CAS  Google Scholar 

  43. Yorimitsu K, Saito T, Toyozaki T, Ishide T, Ohnuma N, Inagaki Y. 1993. Immunohistochemical localization of plasminogen activator inhibitor-1 in human coronary atherosclerosis lesions involved in acute myocardial infarction. Heart Vessels 8:160–162.

    Article  PubMed  CAS  Google Scholar 

  44. Stiko-Rahm A, Wiman B, Hamsten A, Nilsson J. 1990. Secretion of plasminogen activator inhibitor-1 from cultured human umbilical vein endothelial cells is induced by very low density lipoprotein. Arteriosclerosis 10:1067–1073.

    Article  PubMed  CAS  Google Scholar 

  45. Tremoli E, Camera M, Maderna P, Sironi L, Prati L, Colli S, Piovella F, Bernini F, Corsini A, Mussoni L. 1993. Increased synthesis of plasminogen activator inhibitor-1 by cultured human endothelial cells exposed to native and modified LDLs: An LDL receptor-independent phenomenon. Arterioscler Thromb 13:338–346.

    Article  PubMed  CAS  Google Scholar 

  46. Latron Y, Chautan M, Anfosso F, Alessi MC, Lafont H, Juhan-Vague I. 1991. Stimulating effect of oxidized low density lipoprotein on plasminogen activator inhibitor-1 synthesis by endothelial cells. Arterioscler Thromb 11:182–189.

    Article  Google Scholar 

  47. Chauton M, Latron Y, Anfosso F, Alessi MC, Lafont H, Juhan-Vague I, Nalbone G. 1993. Phos-phatidylinositol turnover during stimulation of plasminogen activator inhibitor-1 secretion induced by oxidized low density lipoproteins in human endothelial cells. J Lipid Res 34:101–110.

    Google Scholar 

  48. Kugiyama K, Sakamoto T, Ohgushi M, Ogawa H, Horiguchi M, Yasue H. 1993. Transferable lipids in oxidized low density lipoprotein stimulate plasminogen activator inhibitor-1 and inhibit tissue plasminogen activator release from endothelial cells. Circ Res 73:335–343.

    Article  PubMed  CAS  Google Scholar 

  49. Ren S, Man RYK, Angel A, Shen GX. 1997. Oxidative modification enhances lipoprotein(a)-induced overproduction of plasminogen activator inhibitor-1 in cultured vascular endothelial cells. Athero-sclerosis 128:1–10.

    CAS  Google Scholar 

  50. Etingin OR, Hajjar KA, Harpel PC, Nachman RL. 1991. Lipoprotein(a) regulates plasminogen acti-vator inhibitor-1 expression in endothelial cells. J Biol Chem 266:2456–2465.

    Google Scholar 

  51. Festa A, D’Agostino R Jr, Mykkanen L, Tracy R, Howard BV, HafFner SM. 1999. Low-density lipoprotein particle size is inversely related to plasminogen activator inhibitor-1 levels. The Insulin Resistance Atherosclersis Study. Arterioscler Thromb Vase Biol 19:605–610.

    Article  CAS  Google Scholar 

  52. Levin EG, Miles LA, Fless GM, Scanu AM, Baynhma P, Curtiss LK, Plow EF 1994. Lipoproteins inhibits the secretion of tissue plasminogen activator from human endothelial cells. Arterioscler Thromb 14:438–442.

    Article  PubMed  CAS  Google Scholar 

  53. Ren S, Shen GX. 2000. Impact of antioxidant and HDL on glycated LDL-induced generation of fibrinolytic regulators from vascular endothelial cells. Arterioscler Thromb Vase Biol 20:1688–1693.

    Article  CAS  Google Scholar 

  54. Beaudeux JL, Therond P, Bonnefont-Rousselot D, Gardes-Albert M, Legrand A, Delattre J, Peynet J. 2001. Comparison of the effects of 02*-/HO* free radical-and copper-oxidized LDL or lipopro-tein^) on the endothelial cell release of tissue plasminogen activator and plasminogen activator inhibitor-1. Life Sci 69:2371–2382.

    Article  PubMed  CAS  Google Scholar 

  55. Bunn HF, Gabbay KH, Gallo PM. 1978. The glycosylation of haemoglobin: relevance to diabetes mellitus. Science 200:21–27.

    Article  PubMed  CAS  Google Scholar 

  56. Lyons TJ, Baynes JW, Patrick JS, Colwell JA, Lopes-Virella ME 1986. Glycosylation of low density lipoprotein in patients with type I (insulin-dependent) diabetes: correlation with other parameters of glycaemic control. Diabetologia 29:685–689.

    Article  PubMed  CAS  Google Scholar 

  57. Zhang JY, Ren S, Sun DF, Shen GX. 1998. Influence of Glycation on LDL-induced Generation of Fibrinolytic Regulators in Vascular Endothelial Cells. Arterioscler Thromb Vase Biol 18:1140–1148.

    Article  CAS  Google Scholar 

  58. Zhang JY, Ren S, Shen GX. 2000. Glycation Amplifies Lipoprotein(a)-induced Alterations in the Generation of Fibrinolytic Regulators from Human Vascular Endothelial Cells. Atherosclerosis 150:299–308.

    Article  PubMed  CAS  Google Scholar 

  59. Ren S, Lee H, Hu L, Lu L, Shen GX. 2002. Impact of diabetes-associated lipoproteins on genera-tion of fibrinolytic regulators from vascular endothelial cells. J Clin Endocr Metab 87:286–291.

    Article  PubMed  CAS  Google Scholar 

  60. Bosma PJ, van der Berg E, Kooistra T, Siemieniak DR, Slightom JL. 1988. Human plasminogen acti-vator inhibitor-1. Promoter and structural gene nucleotide sequences. J Biol Chem 263:9129–9141.

    PubMed  CAS  Google Scholar 

  61. Strandberg L, Awrence D, Ny T. 1988. The organization of the human-plasminogen-activator-inhibitor-1 gene. Implication on the evolution of the serine-protease inhibitor family. Eur J Biochem 176:609–616.

    Article  PubMed  CAS  Google Scholar 

  62. Deschemaeker KA, Wyns S, Nelles L, Auwerx J, Ny T, Collen D. 1992. Interaction of AP-1, AP-2, and Sp 1 -like proteins with two distinct sites in the upstream regulatory regions of the plasminogen activator inhibitor-1 gene mediates the phorbol 12-myristate 13-acetate response. J Biol Chem 267: 15086–15091.

    Google Scholar 

  63. Westrhausen DR Jr, Hopkins WE, Billadello JJ. 1991. Multiple transformation growth factor-inducible elements regulate expression of the plasminogen activator inhibitor type-1 gene in Hep G2 cells. J Biol Chem 266:1092–1100.

    Google Scholar 

  64. Keeton MR, Curriden SA, van Zonneveld AJ, Loskutoff DJ. 1991. Identification of regulatory of sequences in the type-1 plasminogen a gene responsive to transformation growth factor-P. J Biol Chem 266:23048–23052.

    PubMed  CAS  Google Scholar 

  65. Bruzdzinski CJ, Johnson MR, Goble CA, Winograd SS, Gelenrter TD. 1993. Mechanism of gluco-corticoid induction of the rat plasminogen activator inhibitor-1 gene in HTC Rat hepatoma cells: Identification of cis-acting regulatory elements. Mol Endocrinol 7:1169–1177.

    Article  PubMed  CAS  Google Scholar 

  66. Eriksson P, Nilsson L, Karpe F, Hamsten A. 1998. Very-low-density lipoprotein response element in the promoter region of the human plasminogen activator inhibitor-1 gene implicated in the impaired fibrinolysis of hypertriglyceridemia. Arterioscler Thromb Vase Biol 18:20–26.

    Article  CAS  Google Scholar 

  67. Dawson S, Wiman B, Hamsten A, Green F, Humphries SE, Hanney AM. 1993. The two allele sequences of a common polymorphism in the promoter of the plasminogen activator inhibitor-1 (gene) respond differently to interleukin-1 in HepG2 cells. J Biol Chem 268:10739–10745.

    PubMed  CAS  Google Scholar 

  68. Erikson P, Kallin B, van Hooft FM, Bavenholm P, Hamsten A. 1995. Allele-specific increase in basal transcription of the plasminogen-activator inhibitor-1 gene is associated with myocardial infarction. Proc Natl Acad Sci USA 92:1851–1855.

    Article  Google Scholar 

  69. Margaglione M, Cappucci G, Colaizzo D, Giuliani N, Vecchione G, Grandone E, Pennelli O, Minno GD. 1998. The PAI-1 gene locus 4G/5G polymorphism is associated with a faminly history of coro-nary artery disease. Arterioscler Thromb Vase Biol 18:152–156.

    Article  CAS  Google Scholar 

  70. Ye S, Green FR, Scarabin PY, Nicaud V, Bara L, Dawson SJ, Humphries SE, Evans A, Luc G, Cambou JP, Arveiler D, Henney AM, Cambien F. 1995. The 4G/5G genetic polymorphism in the promoter of the plasminogen activator inhibitor-1 (PAI-1) gene is associated with differences in plasma PAI-1 activity but not with risk of myocardial infarction in the ECTIM study. Thromb Haemost 74:837–841.

    PubMed  CAS  Google Scholar 

  71. Nilsson L, Banfi C, Diczfalusy U, Tremoli E, Eriksson P. 1998. Unsaturated fatty acids increase plas-minogen activator inhibitor-1 expression in endothelial cells. Arteriosc Thromb Vase Biol 18: 1679–1685.

    Article  CAS  Google Scholar 

  72. Allison BA, Nilsson L, Karpe F, Hamsten A, Eriksson P. 1999. Effects of native, triglyceride-enriched, and oxidatively modified LDL on plasminogen activator inhibitor-1 expression in human endothe-lial cells. Arterioscler Thromb Vase Biol 19:1354–1360.

    Article  CAS  Google Scholar 

  73. Dichtl W, Stiko A, Eriksson P, Goncalves I, Calara F, Banfi C, Ares MP, Hamsten A, Nilsson J. 1999. Oxidized LDL and lysophosphatidylcholine stimulate plasminogen activator inhibitor-1 expression in vascular smooth muscle cells. Arterioscler Thromb Vase Biol 19:3025–3032.

    Article  CAS  Google Scholar 

  74. Lu L, Hu L, Ren S, Shen GX. 2001. Oxidized LDL and VLDL stimulates plasminogen activator inhibitor-1 promoter through a mechanism independent from the VLDL-response element Arte-rioscler Thromb Vase Biol 21:641 (abstr).

    Google Scholar 

  75. Ren S, Shatadal S, Shen GX. 2000. Protein Kinase C-0 Mediates Lipoprotein-induced Generation of PAI-1 from Vascular Endothelial Cells. Am J Physiol: Endocrinol & Metab 278.E656–E662.

    CAS  Google Scholar 

  76. Lottermiser K, Wostmann B, Weisser B, Hertfelder HJ, Schmitz U, Vetter H, Dusing R. 1999. Effects of catopril on fibrinolytic function in healthy humans. Eur J Med Res 4:31–34.

    Google Scholar 

  77. Wright RA, Flapan AD, Alberti KG, Ludlam CA, Fox KA. 1994. Effects of captopril therapy on endogenous fibrinolysis in men with recent, uncomplicated myocardial infarction. J Am Coll Cardiol 24:67–73.

    Article  PubMed  CAS  Google Scholar 

  78. Goodfield NE, Newby DE, Ludlam CA, Flapan AD. 1999. Effects of acute angiotension II type 1 receptor antagonism and angiotensin converting enzyme inhibition on plasm fibrinolytic parameters in patients with heart failure. Circ 99:2983–2985.

    Article  CAS  Google Scholar 

  79. Li-Saw-Hee FL, Beever DG, Lip GY 2001. Effect of antihypertensive therapy using enalapril or losartan on haemostatic markers in essential hypertension: a pilot prospective randomised double blind parallel group trial. Int J Cardiol 78:241–246.

    Article  PubMed  CAS  Google Scholar 

  80. Keidar S, Kaplan M, Hoffman A, Aviram M. 1995. Angiotensin II stimulates macrophage-mediated oxidation of low density lipoproteins. Atherosclerosis 115:201–215.

    Article  PubMed  CAS  Google Scholar 

  81. Wada H, Mori Y, Kaneko T, Wakita Y, Nakase T, Minamikawa K, Ohiwa M, Tamaki Tanigawa M, Kageyma S. 1993. Elevated plasma levels of vascular endothelial cell markers in patients with hyper-cholesterolemia. Am J Hematol 44:112–116.

    Article  PubMed  CAS  Google Scholar 

  82. Dharmalingam S, Ludwig S, Ren S, Fenton JW II, Velthius HT, Ofosu FA, Shen G. 2001. Simvas-tatin reduces plasma levels of plasminogen activator inhibitor-1 in patients with type 2 diabetic patients. Can J Diabetes Care 25:194 (abstr).

    Google Scholar 

  83. Koh KK, Cardillo C, Bui MN, Hathaway L, Csalo G, Waclawiw MA, Panza JA, Cannon RO III. 1999. Vascular effects of estrogen and cholesterol lowering therapies in hypercholesterolemic post-menopausal women. Circ 99:354–360.

    Article  CAS  Google Scholar 

  84. Estelles A, Dalmau J, Falco C, Berbel O, Castello R, Espnan F, Aznar J. 2001. Plasma PAI-1 levels in obese children-effect of weight loss and influence of PAI-1 promoter 4G/5G genetype. Thromb Haemost 86:647–652.

    PubMed  CAS  Google Scholar 

  85. Feener EP, Northrup JM, Aiello LP, King GL. 1995. Angiotensin II induces plasminogen activator inhibitor-1 and -2 expression in vascular EC and smooth muscle cells. J Clin Invest 95:1253–1262.

    Article  Google Scholar 

  86. Lopez S, Peiretti F, Bonardo B, Juhan-Vague I, Nalbone G. 2000. Effect of atorvastatin and fluvas-tatin on the expression of plasminogen activator inhibitor type-1 in cultured human endothelial cells. Atherosclerosis 152:359–366.

    Article  PubMed  CAS  Google Scholar 

  87. Boucier T, Libby P. 2000. HMG-CoA reductase inhibitors reduce plasminogen activator inhibitor-1 expression by human vascular smooth muscle and endothelial cells. Arterioscler Thromb Vase Biol 20:556–562.

    Article  Google Scholar 

  88. Jenkins AJ, Li W, Moller K, Klein RL, Fu MX, Baynes JW, Thorpe SR, Lyons TJ. 1999. Pre-enrichment of modified low density lipoproteins with alpha toco[herol mitigates adverse effect on cultured retinal capillary cells. Cur Eye Res 19:137–145.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Shen, G.X. (2003). Dyslipoproteinemia and Fibrinolysis. In: Pierce, G.N., Nagano, M., Zahradka, P., Dhalla, N.S. (eds) Atherosclerosis, Hypertension and Diabetes. Progress in Experimental Cardiology, vol 8. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-9232-1_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-9232-1_23

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4850-4

  • Online ISBN: 978-1-4419-9232-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics