Skip to main content

Brain Na,K-ATPase Enzymatic Activity and Cardiovascular Regulation

  • Chapter
  • First Online:
Atherosclerosis, Hypertension and Diabetes

Part of the book series: Progress in Experimental Cardiology ((PREC,volume 8))

  • 185 Accesses

Abstract

Na,K-ATPase enzymatic activity, by maintaining intracellular cation homeostasis regulates many cellular functions. This review focuses on the role of brain Na,K-ATPase activity in cardiovascular regulation. Na,K-ATPase activity in cardiovascular/osmo-regulatory nuclei may regulate cardiovascular function by modulating neurotransmitter release and/or cell responsiveness. Inhibition of Na,K-ATPase activity in cardiovascular/osmo-regulatory nuclei increases blood pressure and causes hypertension. Inversely, an increase in Na,K-ATPase activity in nuclei involved in cardiovascular/osmo-regulation decreases blood pressure in normotensive and hypertensive rats. A decrease in brain Na, K-ATPase activity is associated with several cardiovascular diseases such as salt-sensitive hypertension, heart failure post myocardial infarction (MI) and hypertension induced by suprarenal aortic constriction (SRC). In hyper-tension induced by SRC, brain Na,K-ATPase isozyme expression and activity decrease in the early phase but increase in the established phase of the hypertension. The decrease in brain Na,K-ATPase activity in salt-sensitive hypertension appears to be mediated by a direct inhibitory action of brain ouabain-like-compounds (OLCs) and reflects mainly a decrease in OC2/GC3 isozyme activity. In rats post MI, brain OLCs decrease both (Xi and a2/OC3 Na,K-ATPase isozyme activity by direct and indirect mechanisms that may not involve a change in expres-sion. Brain OLCs may indirectly modulate Na,K-ATPase activity by increasing the release of neurotransmitters such as NE and ACh that regulate Na,K-ATPase activity. The neurotransmitters involved in mediating the changes in Na,K-ATPase activity in rats post MI or in hypertension are not yet known. However, these studies suggest that brain a2/OC3 as well as C*! Na,K-ATPase isozymes may play a role in the central control of the circulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Blanco G, Mercer R. 1998. Isozymes of the Na,K-ATPase: Heterogeneity in structure, diversity in function. Am J Physiol 275:F633–F650.

    PubMed  CAS  Google Scholar 

  2. Mobasheri A, Avila J, Cozar-Castellano I, Brownleader MD, Trevan M, Lamb JF, Martin-Vasallo P. 2000. Na+,K+-ATPase Isozyme diversity; Comparative biochemistry and physiological implications of novel functional interactions. Biosci Rep 20:51–91.

    Article  PubMed  CAS  Google Scholar 

  3. McGrail KM, Phillips JM, Sweadner KJ. 1991. Immunofluorescent localization of the three Na,K- ATPase isozymes in the rat central nervous system: Both neurons and glia can express more than one Na,K-ATPase. The J Neurosci 11:381–391.

    CAS  Google Scholar 

  4. Brines ML, Gulanski BI, Gilmore-Herbert M, Greene AL, Benz Jr EJ, Robbins RJ. 1991. Cytoar-chitectural relationships between [3H]ouabain binding and mRNA for isoforms of the sodium pump catalytic subunit in rat brain. Mol Brain Res 10:139–150.

    Article  PubMed  CAS  Google Scholar 

  5. Brines ML, Robbins RJ. 1993. Cell-type specific expression of the Na+,K+-ATPase catalytic subunits in cultured neurons and glia: evidence for polarized distribution in neurons. Brain Res 631:1–11.

    Article  PubMed  CAS  Google Scholar 

  6. Peng L, Martin-Vasallo P, Sweadner KJ. 1997. Isoform of the Na,K-ATPase a and (3 subunits in the rat cerebellum and in granule cell cultures. The I Neurosci 17:3488–3502.

    CAS  Google Scholar 

  7. Dobretsov M, Hastings SL, Stimers HR. 1999. Non-uniform expression of a subunit of the Na+/K+ pump in rat dorsal root ganglia neurons. Brain Res 821:212–217.

    Article  PubMed  CAS  Google Scholar 

  8. Blaustein MP. 1993. Physiological effects of endogenous ouabain: control of intracellular Ca+ stores and cell responsiveness. Am J Physiol 264:C1367–C1387.

    PubMed  CAS  Google Scholar 

  9. Hajek I, Subbarao KVS, Hertz L. 1996. Acute and chronic effects of potassium and noradrenaline on Na+,K+-ATPase activity in cultured mouse neurons and astrocytes. Neurochem Int 28:335–342.

    Article  PubMed  CAS  Google Scholar 

  10. Katz AM. 1985. Effects of digitalis on cell biochemistry: Sodium pump inhibition. J Am Coll Cardiol 5:16A–21A.

    Article  PubMed  CAS  Google Scholar 

  11. Sweadner KJ. 1989. Isozyme of the Na,K-ATPase. Biochim Biophys Acta 988:185–220.

    Article  PubMed  CAS  Google Scholar 

  12. Therien AG, Nestor NB, Ball WJ, Blostein R. 1996. Tissue-specific vs isoform specific differences in cation activation kinetics of the Na,K-ATPase. J Biol Chem 271:7104–7112.

    Article  PubMed  CAS  Google Scholar 

  13. Ewart HS, Klip A. 1995. Hormonal regulation of the Na,K-ATPase: mechanisms underlying rapid and sustained changes in pump activity. Am J Physiol 269:C295–C311.

    PubMed  CAS  Google Scholar 

  14. Huang BS, Harmsen E, Yu H, Leenen FHH. 1992. Brain ouabain-like activity and the sympatho-excitatory and pressor effects on central sodium in rats. Circ Res 71:1059–1066.

    Article  PubMed  CAS  Google Scholar 

  15. Jones DL, Lo S. 1990. Ouabain injected into the hypothalamus elicits pressor responses in anaes-thetized rats. A mapping study. Pharmac Biochem Behav 36:979–983.

    Article  CAS  Google Scholar 

  16. Budzikowski AS, Leenen FHH. 1997. Brain ouabain in the median preoptic nucleus mediates salt-sensitive hypertension in spontaneously hypertensive rats. Hypertension 29:599–605.

    Article  PubMed  CAS  Google Scholar 

  17. Teruya H, Yamazato M, Muratani H, Sakima A, Takishita S, Terano Y, Fukiyama K. 1997. Role of ouabain-like-compound in the rostral ventral medulla in rats. J Clin Invest 99:2791–2798.

    Article  PubMed  CAS  Google Scholar 

  18. Huang BS, Huang X, Harmsen E, Leenen FHH. 1994. Chronic central versus peripheral ouabain, blood pressure and sympathetic nerve activity in rats. Hypertension 23:1087–1090.

    Article  PubMed  CAS  Google Scholar 

  19. Kent MA, Van Hyusse JW, Leenen FHH. 2002. The effects of ouabain and endogenous ouabain like compounds on Na,K-ATPase activity and expression. The FASEB J 16:A465.

    Google Scholar 

  20. Meyer EM, Cooper JR. 1981. Correlation between Na,K-ATPase activity and acetylcholine release in rat cortical synaptosomes. J Neurochem 36:467–475.

    Article  PubMed  CAS  Google Scholar 

  21. Vizi ES. 1978. Na,K-activated adenosinetriphosphatase as a trigger in neurotransmitter release. Neurosci 3:367–384.

    Article  CAS  Google Scholar 

  22. Vizi ES, Oberfrank F. 1992. Na+/K+-ATPase, its endogenous ligands and neurotransmitter release. Neurochem Int 20:11–17.

    Article  PubMed  CAS  Google Scholar 

  23. Torok TL. 1989. Neurochemical transmission and the sodium pump. Progress Neurobiol 32:11–76.

    Article  CAS  Google Scholar 

  24. Santos MS, Goncalves PP, Carvalho AP. 1991. Release of y-[3H]aminobutyric acid from synapto-somes: effect of external cations and ouabain. Brain Res 547:135–141.

    Article  PubMed  CAS  Google Scholar 

  25. Blasi JMV, Cena V, Gonzalez-Garcia C, Marsal J, Solsona C. 1988. Ouabain induces acetylcholine release from pure cholinergic synaptosomes independently of extracellular calcium concentrations. Neurochem Res 13:1035–1041.

    Article  PubMed  CAS  Google Scholar 

  26. Sweadner KJ. 1985. Ouabain-evoked norepinephrine release from intact rat sympathetic neurons: evidence for carrier mediated release. J Neurosci 5:2397–2406.

    PubMed  CAS  Google Scholar 

  27. Schoffelmeer ANM, Mulder AH. 1983. [3H]Noradrenaline release from brain slices induced by an increase in intracellular sodium concentration: role of intracellular calcium stores. J Neurochem 40:615–621.

    Article  PubMed  CAS  Google Scholar 

  28. Satoh E, Nakazato Y. 1989. [3H]Acetylcholine release and the change in cytosolic free calcium level induced by high K+ and ouabain in rat synaptosomes. Neurosci Lett 107:284–288.

    Article  PubMed  CAS  Google Scholar 

  29. Vyas S, Marchbanks RM. 1981. The effect of ouabain on the release of [14C]acetylcholine and other substances from synaptosomes. J Neurochem 37:1467–1474.

    Article  PubMed  CAS  Google Scholar 

  30. Juhaszova M, Blaustein MP. 1997. Na+ pump low and high ouabain affinity a subunit isoforms are differently distributed in cells. Prot Natl Acad Sci USA 94:1800–1805.

    Article  CAS  Google Scholar 

  31. Arnon A, Hamlyn JM, Blaustein MP. 2000. Ouabain augments Ca2+ transients in arterial smooth muscle without raising cytosolic Na+. Am J Physiol 279:H679–H691.

    CAS  Google Scholar 

  32. Phillis JW 1992. Na+/K+-ATPase as an effector of synaptic transmission. Neurochem Int 20:19–22.

    Article  PubMed  CAS  Google Scholar 

  33. Matsuba T, Murata Y, Kawamura N, Hayashi M, Tamada K, Takuma K, Maeda S, Baba A. 1993. Selec-tive induction of (Xi isoform of (Na+ + K+)-ATPase by insulin/insulin-like growth factor-1 in cul-tured rat astrocytes. Arch Biochem Biophys 307:175–182.

    Article  Google Scholar 

  34. Brodsky JL. 1990. Insulin activation of brain Na+,K+-ATPase is mediated by OC2 isoform of the enzyme. Am J Physiol 258:C812–C817.

    PubMed  CAS  Google Scholar 

  35. Shah Jui, Jandhyala S. 1991. Role of the Na +,K+ -ATPase in the centrally mediated hypotensive effects of potassium in anaesthetized rats. J Hypertension 9:167–170.

    Article  Google Scholar 

  36. Shah J, Jandhyala B. 1993. Physiological significance of the Na+/K+-ATPase activity in the central nervous system and endogenous sodium-pump inhibitors in the neural regulation of arterial blood pressure. J Cardiovasc Pharm 22(Supp 2):S13–S15.

    Article  CAS  Google Scholar 

  37. Nishimura M, Takahashi H, Matsusawa M, Ikegaki I, Nakanishi T, Yoshimura M. 1991. The effects of insulin-like materials in the brain on central cardiovascular regulation: with special reference to the central effects of sodium chloride. T Hypertension 9:509–517.

    Article  CAS  Google Scholar 

  38. Shah J, Jandhyala BS. 1995. Age-dependent alterations in Na+,K+-ATPase in the central nervous system of spontaneously hypertensive rats: Relationship to the development of high blood pressure. Clin Exper Hypertension 17:751–767.

    Article  CAS  Google Scholar 

  39. Baski DG, Davidson DA, Corp ES, Lewellen T, Graham M. 1986. An inexpensive microcomputer digital imaging system for densitometry; quantitative autoradiography of insulin receptors with I125 and LKB Ultrofilm. T Neurosci Methods 16:119–129.

    Article  Google Scholar 

  40. Abdelrahman AM, Harmsen E, Leenen FHH. 1992. Dietary sodium and Na,K-ATPase activity in Dahl salt-sensitive versus salt-resistant rats. J Hypertens 13:517–522.

    Article  Google Scholar 

  41. Ou C, Harmsen E, Leenen FHH. 1993. Effects of high sodium on Na7K+-ATPase activity in Wistar Kyoto (WKY) and spontaneously hypertensive rats (SHR).The FASEB J 7:A547

    Google Scholar 

  42. Chow MK, Shao Q, Ren B, Leenen FHH, Van Huysse JW. 2002. Changes in brain Na,K-ATPase isoform expression and enzymatic activity after aortic constriction. Brain Res 944:124–134.

    Article  PubMed  CAS  Google Scholar 

  43. Chen CC, Lin-Shiau SY. 1986. Decreased Na+-K+-ATPase activity and [3H]ouabain binding sites in various tissues of spontaneously hypertensive rats. Eu J Pharmacol 122:311–319.

    Article  CAS  Google Scholar 

  44. Leenen FHH, Harmsen E, Yu H, Ou C. 1993. Effects of dietary sodium on central and peripheral ouabain-like activity in the spontaneously hypertensive rats. Am J Physiol 264:H2051–H2055.

    PubMed  CAS  Google Scholar 

  45. Leenen FHH, Harmsen E, Yu H. 1994. Dietary sodium and central vs peripheral ouabain-like activ-ity in Dahl salt-sensitive vs salt-resistant rats. Am J Physiol 267:H1916–H1920.

    PubMed  CAS  Google Scholar 

  46. Balzan, S, Montali U, Biver P, Ghione S. 1991. Digoxin-binding antibodies reverse the effect of endogenous digitalis-like compounds on Na,K-ATPase in erythrocytes. J Hypertension 9:S304–S305.

    CAS  Google Scholar 

  47. Huang BS, Leenen FHH. 1994. Brain “ouabain” mediates the sympathoexcitatory and hypertensive effects of high sodium intake in Dahl salt-sensitive rats. Circ Res 74:586–595.

    Article  PubMed  CAS  Google Scholar 

  48. Huang BS, Leenen FHH. 1996. Blockade of brain “ouabain” prevents sympathoexcitatory and pressor responses to high sodium in SHR.Am J Physiol 271(40):H103–H108.

    PubMed  CAS  Google Scholar 

  49. Sahin-Erdemli I, Medford RM, Songu-Mize E. 1995. Regulation of Na+,K+ -ATPase α subunit isoforms in rat tissues during hypertension. Eu J Pharmacol 292:163–171.

    CAS  Google Scholar 

  50. Grillo C, Coirini H, McEwen BS, De Nicola AF 1989. Changes of salt intake and of (Na+K)-ATPase activity in brain after high dose treatment with deoxycorticosterone. Brain Res 499:225–233.

    Article  PubMed  CAS  Google Scholar 

  51. Leenen FHH, Huang BS, Yu H, Yuan B. 1995. Brain ouabain mediates sympathetic hyperactivity in congestive heart failure. Cir Res 77:993–1000.

    Article  CAS  Google Scholar 

  52. Leenen FHH, Yuan B, Huang BS. 1999. Brain ouabain or angiotensin II contribute to cardiac dysfunction after myocardial infarction. Am J Physiol 277:H1786–H1792.

    PubMed  CAS  Google Scholar 

  53. Swann AC. 1983. Stimulation of brain Na+,K+-ATPase by norepinephrine in vivo: prevention by receptor antagonists and enhancement by repeated stimulation. Brain Res 260:338–341.

    Article  PubMed  CAS  Google Scholar 

  54. Swann AC, Steketee JD. 1989. Subacute noradrenergic agonist infusions in vivo increase Na+,K+- ATPase and ouabain binding in rat cerebral cortex. J Neurochem 52:1598–1604.

    Article  PubMed  CAS  Google Scholar 

  55. Viola MS, Antonelli MC, Enero MA, Rodriguez de Lores Arnaiz G. 1997. Desipramine modulates 3H-ouabain binding in rat hypothalamus. J Neurosci Res 47:77–89.

    CAS  Google Scholar 

  56. Viola MS, Bojorge G, Rodriguez de Lores Arnaiz G, Enero MA. 1989. Stimulation of Na+,K+ -ATPase activity in certain membranes of the rat central nervous system by acute administration of desipramine (DMI). Cell Mol NeuroBiol 9:263–271.

    PubMed  CAS  Google Scholar 

  57. Stojanonic T, Djuricic BM, Mursulja BB. 1980. The effect of physostigmine on (Na++K+)-ATPase activity in different rat brain regions. Experientia 36:1348–1350.

    Article  Google Scholar 

  58. Therien AG, Blostein R. 2000. Mechanisms of sodium pump regulation. Am J Physiol 279.-C541–C566.

    CAS  Google Scholar 

  59. Swann AC, Steketee J. 1989. Forskolin infusions in vivo increase ouabain binding in brain. Brain Res 476:351–355.

    Article  PubMed  CAS  Google Scholar 

  60. Daly JW, Pagett W, Crevelin CR, Cantacuzene D, Kirk KL. 1981. Cyclic AMP-generating systems: regional differences in activation by adrenergic receptors in rat brain. J Neurosci 1(1):49–59.

    Google Scholar 

  61. Dubocovich ML. 1984. Presynaptic alpha-adrenoreceptors in the central nervous system. Ann NY Acad Sci 430:7–35.

    Article  PubMed  CAS  Google Scholar 

  62. Langer SZ. 1981. Presynaptic regulation of the release of catecholamines. Pharmacol Rev 32:337–362.

    Google Scholar 

  63. L’Heureux R, Dennis T, Curet O, Scatton B. 1986. Measurement of endogenous noradrenaline release in the rat cerebral cortex in vivo by transcortical dialysis: Effects of drugs affecting noradrenergic transmission. J Neurochem 46:1794–1801.

    Article  PubMed  Google Scholar 

  64. Taube HD, Starke K, Borowski E. 1977. Presynaptic receptor systems on the noradrenergic neurons in rat brain. Naunyn-Schmiedebergs Arch Pharmacol 299:123–141.

    Article  PubMed  CAS  Google Scholar 

  65. Van der Zee EA, Strosberg AD, Bohus B, Luiten PG. 1993. Colocalization of muscarinic acetyl-choline receptors and protein kinase C gamma in rat parietal cortex. Brain Res Mol Brain Res 18:152–162.

    PubMed  Google Scholar 

  66. Nishi A, Fisone G, Snyder GL, Dulubova SI, Aperia A, Nairn AC, Greengard P. 1999. Regulation of Na,K-ATPase isoforms in rat neostriatum by dopamine and protein kinase C. J Neurochem 73:1492–1501.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kent, MA.H., VAN Huysse, J.W., Leenen, F.H.H. (2003). Brain Na,K-ATPase Enzymatic Activity and Cardiovascular Regulation. In: Pierce, G.N., Nagano, M., Zahradka, P., Dhalla, N.S. (eds) Atherosclerosis, Hypertension and Diabetes. Progress in Experimental Cardiology, vol 8. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-9232-1_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-9232-1_18

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4850-4

  • Online ISBN: 978-1-4419-9232-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics