The Role of Clinical Pharmacology and of Pharmacokinetics in The Development of Alendronate - A Bone Resorption Inhibitor

  • Arturo G. Porras
  • Barry J. Gertz


The skeleton is the central architectural feature of vertebrates: It distinguishes them from other creatures, it provides structural support and protection to important soft tissues, and it serves as mechanical pivot and provides the mechanical advantage to muscles that makes possible the versatility of movement characteristic of these organisms. In addition to its mechanical functions, bone tissue, which constitutes the bulk of the skeletal mass, carries out various physiological functions. Amongst these, hematopoiesis and mineral metabolism stand out.


Bone Mineral Density Postmenopausal Woman Bone Resorption Bone Turnover Urinary Excretion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cooper, C.: Bone Mass Throughout Life: Bone Growth and Involution, In: Osteoporosis, Pathogenesis and Management, Chapter I, Francis, R. M., ed., Kluwer Academic Publishers, Boston, pp. 1–26, 1990.Google Scholar
  2. 2.
    Nordin, B. E. C.: Osteoporosis with Particular Reference to the Menopause in the Osteoporotic Syndrome Detection, Prevention, and Treatment (Avioli, L.V., Ed.) Grime and Stratton, N. Y., 1983, Ch. 2.Google Scholar
  3. 3.
    The Merck Manual, 15th Ed. (Berkow, R., Fletcher, A. V., Eds.) Merck, Sharp & Dohme Res. Lab., Rahway, NJ, 1987, ch. 112.Google Scholar
  4. 4.
    Christiansen, C., The different routes of administration and the effect of hormone replacement therapy on osteoporosis. Fertil. Steril. 1994 Dec; 62(6 Suppl 2): 152S–156SPubMedGoogle Scholar
  5. 5.
    Alden, J. C., Osteoporosis--a Review. Clin. Ther. 1989; 11(1): 3–14Google Scholar
  6. 6.
    Orwoll, E. S.: Oviatt, S. K.; McClung, M. R.;,Deftos, L. J. and Sexton, G.: The Rate of Bone Mineral Loss in Normal Men and the Effects of Calcium and Cholecalciferol Supplementation. Annals of Internal Medicine 112(1): 29–34, 1990.PubMedGoogle Scholar
  7. 7.
    Riis, B.; Thomsen, K., and Christiansen, C.: Does Calcium Supplementation Prevent Postmenopausal Bone Loss? A Double-Blind, Controlled Clinical Study. New Eng. J. Med. 316(4): 173–177, 1987.Google Scholar
  8. 8.
    Overgaard, K.; Riis, B. J.; Christiansen, C., and Hansen, M. A.: Effect of Salcatonin Given Intranasally on Early Postmenopausal Bone Loss. Brit. Med. J. 299: 477–479, 1989.PubMedGoogle Scholar
  9. 9.
    Grady, D.; Rubin, S. M.; Petitti, D. B.; Fox, C. S.; Black, D.; Ettinger, B.; Ernster, V. L., and Cummings, S. R.: Hormone Therapy to Prevent Disease and Prolong Life in Postmenopausal Women. Ann. of Int. Med. 117(12): 1016–1037, 1992.Google Scholar
  10. 10.
    Jacobs, H. S. and Loeffler, F. E.: Postmenopausal Hormone Replacement Therapy. Brit. Med. J. 305: 1403–1408, 1992.PubMedGoogle Scholar
  11. 11.
    Barrett-Connor, E.: Risks and Benefits of Replacement Estrogen. Ann. Rev. Med. 43: 239–251, 1992.PubMedGoogle Scholar
  12. 12.
    Prestwood,KM; Pilbeam,CC, and Raisz,LG, Treatment of Osteoporosis., Ann. Rev. Med. 1995; 46: 24956Google Scholar
  13. 13.
    Cooper, C. and Melton, L.J., Epidemiology of Osteoporosis., Trends Endocrinol. Metab. 3(6): 224–229, 1992Google Scholar
  14. 14.
    Cummings, S.R., Rubin, S.M., Black, D., The Future of Hip Fractures in the United States. Numbers, Costs, and Potential Effects of Postmenopausal Estrogen., Clin. Orthop. 1990 Mar., (252): 163–6Google Scholar
  15. 15.
    Avioli, L.V., Significance of osteoporosis: a growing international health care problem., Calcif. Tissue. Int. 1991., 49 Suppl: S5–7PubMedGoogle Scholar
  16. 16.
    Riggs, B.L., Melton, L.J 3rd., The prevention and treatment of osteoporosis., N. Engl. J. Med. 1992 Aug 27., 327(9): 620–7PubMedGoogle Scholar
  17. 17.
    Cooper, C., Wickham, C., Walsh, K., Appendicular skeletal status and hip fracture in the elderly: 14 - year prospective data., Bone. 1991; 12(5): 361–4PubMedGoogle Scholar
  18. 18.
    Cummings, S.R., Black, D.M., Nevitt, M.C., Browner, W.S., Cauley, J.A., Genant, H.K., Mascioli, S.R., Scott, J.C., Seeley, D.G., Steiger, P.,, Appendicular bone density and age predict hip fracture in women. The Study of Osteoporotic Fractures Research Group., JAMA. 1990 Feb 2; 263(5): 665–8PubMedGoogle Scholar
  19. 19.
    Hui, S.L., Slemenda, C.W., Johnston, C.0 Jr., Age and bone mass as predictors of fracture in a prospective study., J. Clin. Invest. 1988 Jun; 81(6): 1804–9Google Scholar
  20. 20.
    Melton, L.J., Chao, E.Y.S. and Lane, J., Biomechanical Aspects of Fracture. Chapter 4, in Osteoporosis, Ethiology, Diagnosis and Management, Riggs, G.L. and Melton, L.J., eds., Raven Press, NY, 1988, pp. 111–131Google Scholar
  21. 21.
    Barrett-Connor, E., Risks and Benefits of Replacement Estrogen., Annu. Rev. Med. 1992; 43: 239–51Google Scholar
  22. 22.
    Lindsay, R., Hart, D.M., Forrest, C. and Baird, C., Prevention of Spinal Osteoporosis in Oophorectomised Women., Lancet. 1980 Nov 29; 2(8205): 1151–4PubMedGoogle Scholar
  23. 23.
    Ryan, P.J., Harrison, R., Blake, G.M., Fogelman, I., Compliance With Hormone Replacement Therapy (HRT) After Screening For Post Menopausal Osteoporosis., Br. J. Obstet. Gynaecol. 1992 Apr; 99(4): 325–8PubMedGoogle Scholar
  24. 24.
    U.S. Package Circular for PREMARIN, Physician’s Desk Reference, 2624–2626, 1993Google Scholar
  25. 25.
    Szucs, J., Horvath, C., Kollin, E., Szathmari, M., Hollo, I., Three-Year Calcitonin Combination Therapy For Postmenopausal Osteoporosis With Crush Fractures of the Spine., Calcif. Tissue. Int. 1992 Jan; 50(1): 7–10Google Scholar
  26. 26.
    U.S. Package Circular for MIACALCIN, Physician’s Desk Reference, 2017–2018, 1992Google Scholar
  27. 27.
    Parfitt, A.M., The Coupling of Bone Formation to Bone Resorption: A Critical Analysis of the Concept and of Its Relevance to the Pathogenesis of Osteoporosis., Metab. Bone. Dis. Relat. Res. 1982; 4(1): 1–6PubMedGoogle Scholar
  28. 28.
    Balena, R., Toolan, B.C., Shea, M., Markatos, A., Myers, E.R., Lee, S.C., Opas, E.E., Seedor, J.G., Klein, H., Frankenfield, D., et. al., The Effects of 2-Year Treatment With the Aminobisphosphonate Alendronate on Bone Metabolism, Bone istomorphometry, and Bone Strength in Ovariectomized Nonhuman Primates., J. Clin. Invest. 1993 Dec; 92(6): 2577–86PubMedGoogle Scholar
  29. 29.
    Lauritzen, D B; Balena, R; Shea, M; Seedor, J G; Markatos, A; Le, H M; Toolan, B C; Myers, E R; Rodan, G A; Hayes, W C; Effects of Combined Prostaglandin and Alendronate Treatment on the Histomorphometry and Biomechanical Properties of Bone in Ovariectomized Rats., J Bone Miner Res. 1993 Jul; 8(7): 871 9PubMedGoogle Scholar
  30. 30.
    Weinreb, M; Quartuccio, H; Seedor, J G; Aufdemorte, T B; Brunsvold, M; Chaves, E; Kornman, K S; Rodan, G A; Histomorphometrical Analysis of the Effects of the Bisphosphonate Alendronate on Bone Loss Caused By Experimental Periodontitis in Monkeys., J Periodontal Res. 1994 Jan; 29(1): 35–40PubMedGoogle Scholar
  31. 31.
    Balena, R; Markatos, A; Seedor, J G; Gentile, M; Stark, C; Peter, C P; Rodan, G A; Long-Term Safety of the Aminobisphosphonate Alendronate in Adult Dogs. II. Histomorphometric Analysis of the L5 Vertebrae., J Pharmacol Exp Ther. 1996 Jan; 276(1): 277–83PubMedGoogle Scholar
  32. 32.
    Peter, C P; Cook, W O; Nunamaker, D M; Provost, M T; Seedor, J G; Rodan, G A; Effect of Alendronate on Fracture Healing and Bone Remodeling in Dogs., J Orthop Res. 1996 Jan; 14(1): 74–9PubMedGoogle Scholar
  33. 33.
    Reid, I. R; Nicholson, G. C; Weinstein, R. S; Hosking, D. J; Cundy, T; Kotowicz, M. A; Murphy, W. A Jr; Yeap, S; Dufresne, S; Lombardi, A; Musliner, T. A; Thompson, D. E; Yates, A. J Biochemical and Radiologic Improvement in Paget’s Disease of Bone Treated With Alendronate: A Randomized, Placebó-Controlled Trial.Google Scholar
  34. 34.
    Bone, H. G; Downs, R. W Jr; Tucci, J. R; Harris, S. T; Weinstein, R. S; Licata, A. A; McClung, M. R; Kimmel, D. B; Gertz, B. J; Hale, E; Polvino, W. J., Dose-Response Relationships For Alendronate Treatment in Osteoporotic Elderly Women. Alendronate Elderly Osteoporosis Study Centers.Google Scholar
  35. 35.
    Chavassieux, P. M; Arlot, M. E; Reda, C; Wei, L; Yates, A. J; Meunier, P. J., Histomorphometric Assessment of the Long-Term Effects of Alendronate on Bone Quality and Remodeling in Patients With Osteoporosis.Google Scholar
  36. 36.
    McClung, M; Clemmesen, B; Daifotis, A; Gilchrist, N. L; Eisman, J; Weinstein, R. S; Fuleihan. G. el. H; Reda, C; Yates, A. J; Ravn, P., Alendronate Prevents Postmenopausal Bone Loss in Women Without Osteoporosis. A Double-Blind, Randomized, Controlled Trial. Alendronate Osteoporosis Prevention Study Group.Google Scholar
  37. 37.
    Kanis, J.A., Geusens, P., Christiansen, C., Guidelines for Clinical Trials in Osteoporosis. A Position Paper of the European Foundation for Osteoporosis and Bone Disease., Osteoporos. Int. 1991 Jun., I(3): 182–8Google Scholar
  38. 38.
    Consensus Development Conference: Diagnosis, Prophylaxis and Treatment of Osteoporosis. Amer. J. Med., 94: 646–650, 1993Google Scholar
  39. 39.
    Chrischilles, E.A., Butler, C.D., Davis, C.S., Wallace, R.B., A Model of Lifetime Osteoporosis Impact., Arch. Intern. Med. 1991 Oct., 151(10): 2026.32PubMedGoogle Scholar
  40. 40.
    Gardsell, P., Johnell, O., Nilsson, B.E., Gullberg, B., Predicting Various Fragility Fractures in Women By Forearm Bone Densitometry: A Follow-Up Study., Calcif. Tissue. Int. 1993 May; 52(5): 348–53Google Scholar
  41. 41.
    Haddaway, M.J., Davie, M.W., McCall, I.W., Bone Mineral Density in Healthy Normal Women and Reproducibility of Measurements in Spine and Hip Using Dual-Energy X-Ray Absorptiometry., Br. J. Radiol. 1992 Mar; 65(771): 213–7PubMedGoogle Scholar
  42. 42.
    Wuster, C., Duckeck, G., Ugurel, A., Lojen, M., Minne, H.W., Ziegler, R., Bone Mass of Spine and Forearm in Osteoporosis and in German Normals: Influences of Sex, Age and Anthropometric Parameters., Eur. J. Clin. Invest. 1992 May; 22(5): 366–70PubMedGoogle Scholar
  43. 43.
    Kin, K., Kushida, K., Yamazaki, K., Okamoto, S., Inoue, T., Bone Mineral Density of the Spine in Normal Japanese Subjects Using Dual-Energy X-Ray Absorptiometry: Effect of Obesity and Menopausal Status., Calcif. Tissue. Int. 1991 Aug; 49(2): 101–6Google Scholar
  44. 44.
    Steiger, P., Cummings, S.R., Black, D.M., Spencer, N.E., Genant, H.K., Age-Related Decrements in Bone Mineral Density in Women Over 65., J. Bone. Miner. Res. 1992 Jun; 7(6): 625–32PubMedGoogle Scholar
  45. 45.
    Nordin, B.E., Morris, H.A., Osteoporosis and Vitamin D., J. Cell. Biochem. 1992 May; 49(1): 19–25PubMedGoogle Scholar
  46. 46.
    Siris, E.S, Miller, P.D, Barrett Connor, E., Faulkner, K.G., Wehren, L.E., Abbott, T.A., Berger, M.L., Santora, A., C., and Sherwood, L.M., Identification and Fracture Outcomes of Undiagnosed Low Bone Mineral Density in Postmenopausal Women: Results from the National Osteoporosis Risk Assessment,.J. Am. Med. Assoc. 2001 Dec 12; 286(22): 2815–22Google Scholar
  47. 47.
    Law, M.R., Wald, N.J., Meade, T.W., Strategies For Prevention of Osteoporosis and Hip Fracture., BMJ. 1991 Aug 24; 303(6800): 453–9PubMedGoogle Scholar
  48. 48.
    Kanis, J.A. and McCloskey, E. V., Epidemiology of Vertebral Osteoporosis., Bone. 1992; 13 Suppl 2: S 110Google Scholar
  49. 49.
    Simonen, O., Incidence of Femoral Neck Fractures: Senile Osteoporosis in Finland in the Years 1970–1985., Calcif. Tissue. Int. 1991; 49 Suppl: S1970–1985PubMedGoogle Scholar
  50. 50.
    Falch, J.A., Kaastad, T.S., Bohler, G., Espeland, J., Sundsvold, O.J., Secular Increase and Geographical Differences in Hip Fracture Incidence in Norway., Bone. 1993 Jul-Aug; 14(4): 643–5Google Scholar
  51. 51.
    Nagant-de-Deuxchaisnes, C., Devogelaer, J. P., Increase in the Incidence of Hip Fractures and of the Ratio of Trochanteric to Cervical Hip Fractures in Belgium., Calcif. Tissue. Int. 1988 Mar; 42(3): 201–3Google Scholar
  52. 52.
    Hedlund, R., Lindgren, U., Ahlbom, A., Age-and Sex-Specific Incidence of Femoral Neck and Trochanteric Fractures. An Analysis Based on 20,538 Fractures in Stockholm County, Sweden, 1972–1981., Clin. Orthop. 1987 Sep; (222): 1972–1981Google Scholar
  53. 53.
    Obrant, K.J., Bengner, U., Johnell, O., Nilsson, B.E., Sembo, I., Increasing Age-Adjusted Risk of Fragility Fractures: A Sign of Increasing Osteoporosis in Successive Generations?, Calcif. Tissue. Int. 1989 Mar; 44(3): 157–67Google Scholar
  54. 54.
    Lizaur-Utrilla, A., Puchades-Orts, A., Sanchez-del-Campo, F., Anta-Barrio, J., Gutierrez-Carbonell, P., Epidemiology of Trochanteric Fractures of the Femur in Alicante, Spain, 1974–1982., Clin. Orthop. 1987 May; (218): 1974–1982Google Scholar
  55. 55.
    Mazzuoli, G.F., Gennari, C., Passen, M., Celi, F.S., Acca, M., Camporeale, A., Pioli, G., Pedrazzoni, M., Incidence of Hip Fracture: An Italian Survey., Osteoporos. Int. 1993; 3 Suppl 1: 8–9Google Scholar
  56. 56.
    Martin, A.D., Silverthorn, K.G., and Houston, C.S., Age-Specific Increase in Hip Fractures in Canada, Osteoporosis, Crhistiansen, C, Johanse, J.S. AND Riis, B.J. ed, Osteopress ApS, Copenhagen, 1987, PP 111–112Google Scholar
  57. 57.
    Gennari, C., Epidemiology and Financial Aspects of Osteoporosis., Calcium Reg. and Bone Metabol., 1987, 9:897–899Google Scholar
  58. 58.
    Lee, C.M., Sidhu, J.S., Pan, K.L., Hip Fracture Incidence in Malaysia 1981–1989., Acta. Orthop. Scand. 1993 Apr; 64(2): 1981–1989Google Scholar
  59. 59.
    Cooper, C., Campion, G., Melton, L.J 3rd., Hip Fractures in the Elderly: A World-Wide Projection., Osteoporos. Int. 1992 Nov; 2(6): 285–9Google Scholar
  60. 60.
    Cooper, C., Atkinson, E.J., Jacobsen, S.J., O’Fallon, W.M., Melton, L.J 3rd., Population-Based Study of Survival After Osteoporotic Fractures., Am. J. Epidemiol. 1993 May 1; 137(9): 1001–5PubMedGoogle Scholar
  61. 61.
    Gutyon, A.C. and Hall, J.E. Textbook of medical physiology, 10`1’ Ed., W. B. Saunders Company, Philadelphia, 2000.Google Scholar
  62. 62.
    Fleisch, H; Russell, R. G; Straumann, F, Effect of Pyrophosphate on Hydroxyapatite and Its Implications in Calcium Homeostasis., Nature. 1966 Nov 26; 212(65): 901–3Google Scholar
  63. 63.
    Fleisch, H; Maerki, J; Russell, R. G, Effect of Pyrophosphate on Dissolution of Hydroxyapatite and Its Possible Importance in Calcium Homeostasis., Proc-Soc-Exp-Biol-Med. 1966 Jun; 122(2): 317–20PubMedGoogle Scholar
  64. 64.
    Fleisch, H; Russell, R. G; Bisaz, S; Casey, P. A; Muhlbauer, R. C, The Influence of Pyrophosphate Analogues (Diphosphonates) on the Precipitation and Dissolution., Calcif. Tissue-Res. 1968; Suppl:l0-l0aGoogle Scholar
  65. 65.
    Fleisch, H; Russell, R. G; Francis, M. D, Diphosphonates Inhibit Hydroxyapatite Dissolution In-Vitro and Bone Resorption in Tissue Culture and In-Vivo., Science. 1969 Sep 19; 165(899): 1262–4PubMedGoogle Scholar
  66. 66.
    Fleisch, H.: Bisphosphonates: Pharmacology and Use in the Treatment of Tumour-Induced Hypercalcaemic and Metastatic Bone Disease. Drug 42(6): 919–944, 1991.Google Scholar
  67. 67.
    Bergstrom, J D, Bostedor, R G, Masarachia, P J, Reszka, A A, Rodan, G, Alendronate Is a Specific, Nanomolar Inhibitor of Famesyl Diphosphate Synthase., Arch Biochem Biophys. 2000 Jan 1, 373(1): 231 41Google Scholar
  68. 68.
    Fisher, J E, Rodan, G A, Reszka, A A, In-Vivo Effects of Bisphosphonates on the Osteoclast Mevalonate Pathway., Endocrinology. 2000 Dec, 141(12): 4793 6Google Scholar
  69. 69.
    Reszka, A. A; Halasy-Nagy, J; Rodan, G. A, Nitrogen-Bisphosphonates Block Retinoblastoma Phosphorylation and Cell Growth By Inhibiting the Cholesterol Biosynthetic Pathway in a Keratinocyte Model For Esophageal Irritation., Mol. Pharmacol. 2001 Feb; 59(2): 193–202PubMedGoogle Scholar
  70. 70.
    Rodan GA, Mechanisms of Action of Bisphosphonates, Annual Review of Pharmacology and Toxicology. 1998; 38: 375–388Google Scholar
  71. 71.
    Sato, M.; Grasser, W.; Endo, N.; Akins, R., and Simmons, H.: Bisphosphonate Action: Alendronate Localization in Rat Bone and Effects on Osteoclast Ultrastructure. J. Clin. Invest. 88: 2095–2105, 1991.PubMedGoogle Scholar
  72. 72.
    Comparison of MK-217 to Etidronate in Preclinical Studies, MRL, February 20, 1992 [Nonclinical Pharmacology and Toxicology Documentation, Nonclinical Pharmacodynamics, Reference 30].Google Scholar
  73. 73.
    Flanagan, A. M. and Chambers, T. J.: Dichloromethylenebisphosphonate (CL2MBP) Inhibits Bone Reabsorption Through Injury to Osteoclasts That Reabsorb CL2MBP-Coated Bone. Bone and Mineral 6: 33–43; 1989.PubMedGoogle Scholar
  74. 74.
    Lundy, M. W; Stauffer, M; Wergedal, J. E; Baylink, D. J; Featherstone, J. D; Hodgson, S. F; Riggs, B. L, Histomorphometric Analysis of Iliac Crest Bone Biopsies in Placebo-Treated Versus Fluoride-Treated Subjects., Osteoporos-Int. 1995 Mar; 5(2): 115–29PubMedGoogle Scholar
  75. 75.
    Cranney, A, Guyatt, G, Krolicki, N, Welch, V, Griffith, L, Adachi, J D, Shea, B, Tugwell, P, and Wells, G: A Meta Analysis of Etidronate For the Treatment of Postmenopausal Osteoporosis., Osteoporos Int. 2001; 12(2): 140–51PubMedGoogle Scholar
  76. 76.
    Riggs, BL, Hodgson, SF, O’Fallon, WM, Chao, EYS, Wahner, HW, Muhs, JM, Cedel, SL and Melton U III. Effect of Fluoride Treatment on the Fracture Rate in Postmenopausal Women with Osteoporosi, N. Eng. J. Med., 1990, 322 802–809Google Scholar
  77. 77.
    Thompson, D D; Seedor, J G; Weinreb, M; Rosini, S; Rodan, G A; Aminohydroxybutane Bisphosphonate Inhibits Bone Loss Due to Immobilization in Rats., J Bone Miner Res. 1990 Mar; 5(3): 279–86PubMedGoogle Scholar
  78. 78.
    Toolan, B C; Shea, M; Myers, E R; Borchers, R E; Seedor, J G; Quartuccio, H; Rodan, G; Hayes, W C; Effects of 4-Amino-l-Hydroxybutylidene Bisphosphonate on Bone Biomechanics in Rats., J Bone Miner Res. 1992 Dec; 7(12): 1399 406Google Scholar
  79. 79.
    Sato, M; Grasser, W; Endo, N; Akins, R; Simmons, H; Thompson, D D; Golub, E; Rodan, G A; Bisphosphonate Action. Alendronate Localization in Rat Bone and Effects on Osteoclast Ultrastructure., J Clin Invest. 1991 Dec; 88(6): 2095 105Google Scholar
  80. 80.
    Rodan, G A; Seedor, J G; Balena, R; Preclinical Pharmacology of Alendronate., Osteoporos Int. 1993; 3 Suppl 3: S7–12PubMedGoogle Scholar
  81. 81.
    Yamamoto, M; Markatos, A; Seedor, J G; Masarachia, P; Gentile, M; Rodan, G A; Balena, R; The Effects of the Aminobisphosphonate Alendronate on Thyroid Hormone-Induced Osteopenia in Rats., Calcif Tissue Int. 1993 Oct; 53(4): 278–82PubMedGoogle Scholar
  82. 82.
    Rodan, G A; Balena, R; Bisphosphonates in the Treatment of Metabolic Bone Diseases., Ann Med. 1993 Aug; 25(4): 373–8PubMedGoogle Scholar
  83. 83.
    Balena, R; Markatos, A; Gentile, M; Masarachia, P; Seedor, J G; Rodan, G A; Yamamoto, M; The Aminobisphosphonate Alendronate Inhibits Bone Loss Induced By Thyroid Hormone in the Rat. Comparison Between Effects on Tibiae and Vertebrae., Bone. 1993 May Jun; 14(3): 499 504Google Scholar
  84. 84.
    Wingen, F. and Schmähl, D.: Pharmacokinetics of the Osteotropic Diphosphonate 3-Amino-IHydroxypropane-1,1-Diphosphonic Acid in Mammals. Arzneim. Forsch./Drug Res. 37(9): 1037–1042,1987.Google Scholar
  85. 85.
    Michael, W. R.; King, W. R., and Wakim, J. M.: Metabolism of Disodium Ethane-I-Hydroxy-1,1Diphosphonate (Disodium Etidronate) in the Rat, Rabbit, Dog and Monkey. Toxicology and Applied Pharmacology 21: 503–515, 1972.PubMedGoogle Scholar
  86. 86.
    Gural, R. P.: Pharmacokinetics and Gastrointestinal Absorption Behavior of Etidronate. Abstract of Dissertation, University of Kentucky, 1975.Google Scholar
  87. 87.
    Francis, M. D. and Martodam, R. R.: Chemical, Biochemical, and Medicinal Properties of the Diphosphonates, In: The Role of Phosphonates in Living Systems, Chap. 4, pp. 55–96.Google Scholar
  88. 88.
    Lauren, L.; Osterman, T., and Karhi, T.: Pharmacokinetics of Clodronate After Single Intravenous, Intramuscular and Subcutaneous Injections in Rats. Pharmacology and Toxicology 69: 365–368, 1991.PubMedGoogle Scholar
  89. 89.
    Mönkkönen, J.; Ylitalo, P.; Elo, H. A., and Airaksinen, M. M.: Distribution of [14C]Clodronate (Dichloromethylene Bisphosphonate) Disodium in Mice. Toxicology and Applied Pharmacology 89: 287–292, 1987.PubMedGoogle Scholar
  90. 90.
    Mönkkönen, J.: A One Year Follow-Up Study of the Distribution of [14C]Clodronate in Mice and Rats. Pharmacol-ogy and Toxicology 62: 51–53, 1988.Google Scholar
  91. 91.
    Wingen, F. and Schmähl, D.: Distribution of 3-Amino-1-Hydroxypropane-1,1-Diphosphonic Acid in Rats and Effects on Rat Osteosarcoma. Arzneim. Forsch./Drug Res. 35(10): 1565–1571, 1985.Google Scholar
  92. 92.
    Larsson, A. and Rohlin, M.: In-Vivo Distribution of 14C-Labeled Ethylene-l-Hydroxy-1,1Diphosphonate in Normal and Treated Young Rats. An Autoradiographic and Ultra-structural Study. Toxicology and Applied Pharmacology 52: 391–399, 1980.PubMedGoogle Scholar
  93. 93.
    Mönkkönen, J.; Urtti, A.; Paronen, P.; Elo, H. A., and Ylitalo, P.: The Uptake of Clodronate (Dichloromethylene Bisphosphonate) by Macrophages In-Vivo and In-Vitro. Drug Metabolism and Disposition 17(6): 690–693, 1989.PubMedGoogle Scholar
  94. 94.
    Troehler, U.; BonjourJ.P., and Fleisch, H.: Renal Secretion of Diphosphonates in Rats. Kidney International 8: 6–13, 1975.PubMedGoogle Scholar
  95. 95.
    Lin, J.H., Bisphosphonates: A Review of their Pharmacokinetic Properties, Bone-. Feb. 1996; 18 (2): 7585Google Scholar
  96. 96.
    Lin, J.H; Duggan, D.E; Chen, I.W; Ellsworth, R.L, Physiological Disposition of Alendronate, A Potent Anti-Osteolytic Bisphosphonate, in Laboratory Animals., Drug Metab. Dispos. 1991 Sep-Oct; 19(5): 926–32Google Scholar
  97. 97.
    Lin, J.H; Chen, I.W; deLuna, F.A, Nonlinear Kinetics of Alendronate. Plasma Protein Binding and Bone Uptake., Drug Metab. Dispos. 1994 May-Jun; 22(3): 400–5Google Scholar
  98. 98.
    Porras, A.G; Holland, S.D; Gertz, B.J, Pharmacokinetics of Alendronate., Clin. Pharmacokinet. 1999 May; 36(5): 315–28Google Scholar
  99. 99.
    Lin, J.H; Chen, I.W; deLuna, F.A; Hichens, M, Role of Calcium in Plasma Protein Binding and Renal Handling of Alendronate in Hypo-and Hypercalcemic Rats., J. Pharmacol. Exp. Ther. 1993 Nov; 267(2): 670–5PubMedGoogle Scholar
  100. 100.
    Kino, I; Kato, Y; Lin, J.H; Sugiyama, Y, Renal Handling of Biphosphonate Alendronate in Rats., Biopharm. Drug. Dispos. 1999 May; 20(4): 193–8Google Scholar
  101. 101.
    Lin, J.H; Chen, I.W; Deluna, F.A; Hichens, M, Renal Handling of Alendronate in Rats. An Uncharacterized Renal Transport System., Drug Metab. Dispos. 1992 Jul-Aug; 20(4): 608–13Google Scholar
  102. 102.
    Lin, J.H., Chen, I.W., and deLuna, F.A., On the Absorption of Alendronate in Rats, J. Pham. Sci. 1994, 83(12), 1741–6Google Scholar
  103. 103.
    Tucci, J.R., Tonino, R.P., Emkey, R.D., Peverly, C.A., ‘Cher, U., Santora, A.C, 2nd, Effect of Three Years of Oral Alendronate Treatment In Postmenopausal Women with Osteoporosis, Am. J. Med. 1996 Nov., 101(5): 488–501.PubMedGoogle Scholar
  104. 104.
    Devogelaer, J.P., Broll, H., Correa-Rotter, R., Cumming, D.C., De-Deuxchaisnes, C.N., Geusens, P., Hosking, D., Jaeger, P., Kaufman, J.M., Leite, M., Leon, J., Liberman, U., Menkes, C.J., Meunier, P.J., Reid, I., Rodriguez, J., Romanowicz, A., Seeman, E., Vermeulen, A., Hirsch, L.J., Lombardi, A., Plezia, K., Santora, A.C., Yates, A.J. and Yuan, W., Oral Alendronate Induces Progressive Increases in Bone Mass of the Spine, Hip, and Total Body over 3 Years in Postmenopausal Women with Osteoporosis, Bone,1996 Feb., 18(2): 141–50.PubMedGoogle Scholar
  105. 105.
    Nevitt, M.C., Thompson, D.E., Black, D.M., Rubin, S.R., Ensrud, K., Yates, A.J., and Cummings, S.R, Effect of Alendronate on Limited-Activity Days and Bed-Disability Days Caused by Back Pain In Postmenopausal Women with Existing Vertebral Fractures. Fracture Intervention Trial Research Group. Arch. Intern. Med. 2000 Jan 10., 160(1): 77–85.Google Scholar
  106. 106.
    Cummings, S.R., Black, D.M., Thompson, D.E., Applegate, W.B., Barrett-Connor, E., Musliner, T.A., Palermo, L., Prineas, R., Rubin, S.M., Scott, J.C., Vogt, T., Wallace, R., Yates, A.J., and LaCroix, A.Z, Effect of Alendronate on Risk of Fracture in Women with Low Bone Density but Without Vertebral Fractures: Results from the Fracture Intervention Trial. JAMA. 1998 Dec 23–30., 280(24): 23–30.PubMedGoogle Scholar
  107. 107.
    Levis, S., Quandt, S.A., Thompson, D., Scott, J., Schneider, D.L., Ross, P.D., Black, D., Suryawanshi, S., HochbergM.and Yates, J, Alendronate Reduces the Risk of Multiple Symptomatic Fractures: Results from the Fracture Intervention Trial. J. Am. Geriatr. Soc. 2002 Mar., 50(3): 409–15.PubMedGoogle Scholar
  108. 108.
    Greenspan, S.L., Holland, S., Maitland-Ramsey, L., Poku, M., Freeman, A., Yuan, W., Kher, U., and Gertz, B., Alendronate stimulation of nocturnal parathyroid hormone secretion: a mechanism to explain the continued improvement in bone mineral density accompanying alendronate therapy. Proc. Assoc. Am. Physicians. 1996 May., 108(3): 230–8.PubMedGoogle Scholar
  109. 109.
    Caniggia, A. and Gennari, C.: Kinetics and Intestinal Absorption of [32P]EHDP in Man. Calcif. Tissue Res. 22(Suppl): 428–429, 1977.Google Scholar
  110. 110.
    Daley-Yates, P. T.; Dodwell, D. J.; Pongchaidecha, M.; Coleman, R. E., and Howell, A.: The Clearance and Bioavailability of Pamidronate in Patients With Breast Cancer and Bone Metastases. Calcif. Tissue Int. 49: 433–435, 1991.Google Scholar
  111. 111.
    Leyvraz, S.; Hess, U.; Flesch, G.; Bauer, J.; Hauffe, S.; Ford, J. M., and Burckhardt, P.: Pharmacokinetics of Pamidronate in Patients With Bone Metastases. JNCI 84(10): 788–792, 1992.PubMedGoogle Scholar
  112. 112.
    Pentikäinen, P. J.; Elomaa, I.; Nurmi, A.-K., and Kärkkäinen, S.: Pharmacokinetics of Clodronate in Patients With Metastatic Breast Cancer. International J. of Clinical Pharmacology, Therapy and Toxicology 27(5): 222–228, 1989.Google Scholar
  113. 113.
    Wiedmer, W. H.; Zbinden, A. M.; Trechsel, U., and Fleisch, H.: Ultrafiltrability and Chromatographic Properties of Pyrophosphate, 1-Hydroxyethylidene-1,l-Bisphosphonate, and Dichloromethylenebisphosphonate in Aqueous Buffers and in Human Plasma. Calcif. Tissue Int. 35: 397–400,1983.Google Scholar
  114. 114.
    Conrad, K. A. and Lee, S. M.: Clodronate Kinetics and Dynamics. Clin. Pharmacol. Ther. 30(1): 114–120, 1981.PubMedGoogle Scholar
  115. 115.
    Gural, R. P.: Pharmacokinetics and Gastrointestinal Absorption Behavior of Etidronate. Abstract of Disserta-tion, Universi-ty of Kentucky, 1975.Google Scholar
  116. 116.
    Recker, R. R. and Saville, P. D.: Intestinal Absorption of Disodium Ethane-l-Hydroxy-1,1-Diphosphonate (Disodium Etidronate) Using a Deconvolution Technique. Toxicology and Applied Pharmacology 24: 580–589, 1973.PubMedGoogle Scholar
  117. 117.
    Powell, J. H. and DeMark, B. R.: Clinical Pharmacokinetics of Diphosphonates. in: Bone Resorption, Metastasis, and Diphosphonates, Garattini, S. ed., Raven Press, New York, 1985, pp. 41–49.Google Scholar
  118. 118.
    Fitton, A. and McTavish, D.: Pamidronate: A Review of its Pharmacological Properties and Therapeutic Efficacy in Resorptive Bone Disease. Drugs 41(2): 289–318, 1991.PubMedGoogle Scholar
  119. 119.
    Yakatan, G. J.; Poynor, W. J.; Talbert, R. L.; Floyd, B. F.; Slough, C. L.; Ampulski, R. S., and Benedict, J. J.: Clodronate Kinetics and Bioavailability. Clin. Pharmacol. Ther. 31(3): 402–410, 1982.Google Scholar
  120. 120.
    Hanhijärvi, H.; Elomaa, I.; ‘Carlsson, M., and Lauren, L.: Pharmacokinetics of Disodium Clodronate After Daily Intravenous Infusions During Five Consecutive Days. International J. of Clinical Pharmacology, Therapy and Toxicology 27(12): 602–606, 1989.Google Scholar
  121. 121.
    FogelmanI.;Smith, L.; Mazess, R.; Wilson, M. A., and Bevan, J. A.: Absorption of Oral Diphosphonate in Normal Subjects. Clinical Endocrinology 24: 57–62, 1986.PubMedGoogle Scholar
  122. 122.
    Kline, W. F.; Matuszewski, B. K., and Bayne, W. F.: Determina-tion of 4-Amino-I-Hydroxybutane-1,1Bisphosphonic Acid in Urine by Automated Pre-Column Derivatization With 2,3-Naphthalene Dicarboxyaldehyde and High-Performance Liquid Chromatography With Fluorescence Detection. J. Chromatogr. (Biomed. Appl.) 534: 139–149, 1990.Google Scholar
  123. 123.
    Kline, W. F. and Matuszewski, B. K.: Improved Determination of the Bisphosphonate Alendronate in Human Plasma and Urine by Automated Precolumn Derivatization and High Performance Liquid Chromatography With Fluorescence and Electrochemical Detection. J. Chromatogr. (Biomed. Appl.) 583: 183–193, 1992.Google Scholar
  124. 124.
    Porras, A.G., Holland, S.D., Gertz, B.J., Pharmacokinetics of Alendronate, Clin. Pharmacokinet. May 1999, 36 (5): 315–32Google Scholar
  125. 125.
    Cocquyt, V., Kline, W.F., Gertz, B.J., Van Belle, S.J.P., Holland, S.D., DeSmet, M., Quan, H., Vyas, K.P., Zhang, K.Y.E., De Greve, J., Porras, A.G., Pharmacokinetics of Intravenous Alendronate, J. Clin. Pharm., Apr 1999; 39 (4): 385–393Google Scholar
  126. 126.
    Gibaldi, M. and Perrier, D.: Chapter 11: Noncompartmental Analysis Based on Statistical Moment Theory, in: Pharmacokinetics. 2nd ed., Marcel Dekker, Inc., New York and Basel, 1982, pp. 409–417.Google Scholar
  127. 127.
    Khan, S.A., Kanis, J.A., Vasikaran, S., Kline, W.F., Matuszewski, B.K., McCloskey, E.V., Beneton, M.N.C., Gertz, B.J., Sciberras, D.G., Holland, S.D., Orgee, J., Coombes, G.M., Rogers, S.R., Porras, A.G, Elimination and Biochemical Responses to Intravenous Alendronate in Postmenopausal Osteoporosis, J. Bone Mineral Res., Oct 1997., 12 (10): 1700–1707Google Scholar
  128. 128.
    Gertz, B.J., Holland, S.H., Kline, W.F., Matuszewski, B.K., Freeman, A., Quan, H., Lasseter, K.C., Mucklow, J.C., Porras, A.G., Studies of the Oral Bioavailability of Alendronate, Clin. Pharm. Ther. Sep 1995., 58 (3): 288–298Google Scholar
  129. 129.
    Altman, D. F.: The Effect of Age on Gastrointestinal Function. Sleisenger, M. H., Fordtran, J. S., eds., In: Gastrointestinal Disease, Volume 1, Pathophysiology, Diagnosis, Management, 4th ed., W. B. Saunders Company, Philadelphia, pp. 162–169.Google Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • Arturo G. Porras
    • 1
  • Barry J. Gertz
    • 2
  1. 1.Merck Research LaboratoriesWest PointUSA
  2. 2.Merck Research LaboratoriesRahwayUSA

Personalised recommendations