Molecular Characterization of Petroleum and Its Fractions By Mass Spectrometry

  • Aaron Mendez
  • Jenny Bruzual
Part of the Modern Analytical Chemistry book series (MOAC)


Energy consumption is foreseen to have a sustained demand in industrialized countries and an increasing demand in the developing world. The industrialized countries are engaged in extensive programs to improve the fuel formulations to gain efficiency, especially in transportation and energy generation.


Compound Type High Resolution Mass Spectrometry Field Ionization Metastable Atom Heavy Petroleum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kurtz, S. S. Jr. “The development of hydrocarbon analysis”, Prepr. Symp.-Am. Chem. Soc, Division of Petroleum Chemistry, New York, August 27-September 1, 1972.Google Scholar
  2. 2.
    Brown, R. A. Anal. Chem. 1951, 23, 430–437.Google Scholar
  3. 3.
    Annual Book of ASTM Standards 2001, vol. 05. 02.Google Scholar
  4. 4.
    Annual Book of ASTM Standards 2001, vol. 05. 03.Google Scholar
  5. 5.
    O’Neal, M. J. ; Wier, T. P. “Mass Spectrometry of Heavy Hydrocarbons”, Anal. Chem. 1951, 23, 830–843.CrossRefGoogle Scholar
  6. 6.
    Lumpkin, H. E. ; Johnson, B. H. “Identification of Compound Types in a Heavy Petroleum Gas Oil”, Anal. Chem. 1954, 26, 1719–1722.CrossRefGoogle Scholar
  7. 7.
    Hastings, S. H. ; Johnson, B. H. ; Lumpkin, H. E. “Analysis of the Aromatic Fraction of Virgin Gas Oils by Mass Spectrometer”, Anal. Chem. 1956, 28, 1243–1247.CrossRefGoogle Scholar
  8. 8.
    Lumpkin, H. E. “Determination of Saturated Hydrocarbons in Heavy Petroleum Fractions by Mass Spectrometry”, Anal. Chem. 1956, 28, 1946–1948.CrossRefGoogle Scholar
  9. 9.
    Gordon, R. J. ; Moore, R. J. ; Mueller, C. E. “Aromatic Types in Heavily Cracked Gas Oil Fraction. Combined use of Ultraviolet and Mass Spectrometry”, Anal. Chem. 1958, 30, 1221–1224.CrossRefGoogle Scholar
  10. 10.
    Bartz, K. W. ; Aczel, T. ; Lumpkin, H. E. ; Stehling, F. C. “Characterization of Aromatics from Light Catalytic Cycle Stocks by Spectrometric Techniques. Compounds Types of the General Formula CnH2n-16 and CnH2n-18”, Anal. Chem. 1962, 34, 1814–1828.CrossRefGoogle Scholar
  11. 11.
    Aczel, T. ; Bartz, K. W. ; Lumpkin, H. E. ; Stehling, F. C. “Characterization of Aromatics in Light Catalytic Cycle Stock by Spectrometric Techniques. Compound Types of the General Formula CnH2n-12 and CnH2n-14”, Anal. Chem. 1962, 34, 1821–1828.CrossRefGoogle Scholar
  12. 12.
    Hood, A. ; O’Neal, M. J. Advances in Mass Spectrometry, AMSPA, Waldron, 1959.Google Scholar
  13. 13.
    Snyder, L. R. ; Howard, H. E. ; Ferguson, W. C. “Direct Mass Spectrometric Analysis of Petroleum Samples Boiling in the Kerosene Range”, Anal. Chem. 1963, 35, 1676–1679.CrossRefGoogle Scholar
  14. 14.
    Gallegos, E. J. ; Green, J. W. ; Lindeman, L. P. ; LeTourneau, R. L. ; Teeter, R. M. “Petroleum group type analysis by high resolution mass spectrometry”, Anal. Chem. 1967, 29, 1833–1838.CrossRefGoogle Scholar
  15. 15.
    Robinson, C. J. “Low-resolution mass spectrometric determination of aromatics and saturates in petroleum fractions”, Anal. Chem. 1971, 43, 1425–1434.CrossRefGoogle Scholar
  16. 16.
    Piemonti, C; Hazos, M. “Aromatic and Saturate Analysis by Low Resolution Mass Spectrometry”, Prepr. Symp. -Am. Chem. Soc, Division of Petroleum Chemistry, 1992, 37, 1521–1532. Washington D. C. , August 23–28, 1992.Google Scholar
  17. 17.
    Ashe, T. R. ; Colgrove, S. G. “Petroleum mass spectral hydrocarbon compound type analysis”, Energy Fuels 1991, 5, 356–360.CrossRefGoogle Scholar
  18. 18.
    McMurray, W. J. ; Green, B. N. ; Lipsky, S. R. “Fast scan high resolution mass spectrometry, operating parameters and its tandem use with gas chromatography”, Anal Chem. 1966, 38, 1194–1204.CrossRefGoogle Scholar
  19. 19.
    Aczel, T. ; Lumpkin, H. E. “Detailed characterization of gas oil by high and low resolution mass spectrometry”, Symp. -Advances in Analysis of Petroleum and its Products. American Chemical Society, New York, August 27-September 1, 1972.Google Scholar
  20. 20.
    Chasey, K. L. ; Aczel, T. “Polycyclic aromatic structure distribution by high-resolution mass spectrometry”, Energy Fuels 1991, 5, 386–394.CrossRefGoogle Scholar
  21. 21.
    Gallegos, E. J. ; Green, J. W. ; Lideman, L. P. ; LeTourneau, R. L. ; Teeter, R. M. “Petroleum group-type analysis by high-resolution mass spectrometry”, Anal Chem. 1967, 39, 1833–1204.CrossRefGoogle Scholar
  22. 22.
    Joly, D. “Analyse directe des coupes pétroliéres lourdes par spectrométrie do masse”, Proceed Int. Symp. Charactc. Heavy Oils Pet. Resid. , Technip, Paris 1984; pp. 416–420.Google Scholar
  23. 23.
    Hsu, C. S. ; Liang, Z. ; Campana, J. E. “Hydrocarbon characterization by ultrahigh resolution fourier transform ion cyclotron resonance mass spectrometry”, Anal. Chem. 1994, 66, 850– 855.CrossRefGoogle Scholar
  24. 24.
    Guan, S. ; Marshall, A. G. ; Scheppele, S. E. “Resolution and chemical formula identification of aromatic hydrocarbons and aromatic compounds containing sulfur, nitrogen or oxygen in petroleum distillates and refinery streams”, Anal Chem. 1996, 68, 46–71.CrossRefGoogle Scholar
  25. 25.
    Rodgers, R. P. ; White, F. M. ; Hendrickson, C. L. ; Marshall, A. G. ; Andersen, K. V. “Resolution, elemental composition, and simultaneous monitoring by fourier transform ion cyclotron resonance mass spectrometry of organosulfur species before and after diesel fuel processing”, Anal Chem. 1998, 70, 4743–4750.CrossRefGoogle Scholar
  26. 26.
    Hsu, C. S. ; Drinkwater, D. “Gas chromatography-mass spectrometry for the analysis of complex hydrocarbon mixtures”, Chromatogr. Sci. Ser. 2001, 86, 55–94.Google Scholar
  27. 27.
    Kuras, M. ; Hala, S. “The use of a gas chromatograph-mass spectrometer for the analysis of complex hydrocarbon mixtures”, J. Chromatog. 1970, 51, 45–57.CrossRefGoogle Scholar
  28. 28.
    Aczel, T. ; Hsu, C. S. “Recent Advances in the Low Voltage Mass Spectrometric Analysis of Fossil Fuel Distillates”, Int. J. Mass Spectrom. Ion Processes 1989, 92, 1–7.CrossRefGoogle Scholar
  29. 29.
    Dzidic, I. ; Petersen, H. A. ; Wadsworth, P. A. ; Hart, H. V. “Towsend Discharge Nitric Oxide Chemical Ionization Gas Chromatography/Mass Spectrometry for Hydrocarbon Analysis of the Middle Distillates”, Anal. Chem. 1992, 64, 2227–2232.CrossRefGoogle Scholar
  30. 30.
    Wadsworth, P. A. ; Villalanti, D. C. “Pinpoint Hydrocarbon Types. New analytical methods helps in processing clean fuels”, Hydrocarbon Processing 1992, 71, 109–112.Google Scholar
  31. 31.
    Teng, S. T. ; Ragsdale, J. ; Urdal, K. “SI-PIONA on the INCOS™ XL. A Novel GC-MS Approach to Gasoline Analysis”, Application Report No. 225 Finnigan MAT.Google Scholar
  32. 32.
    Malhotra, R. ; Coggiola, M. A. ; Young, S. E. ; Sprindt, C. A. “GC-FIMS Analysis of Transportation Fuels”, Symp. -Advanced Testing for Fuel Quality and Performance. Division of Petroleum Chemistry, 212th American Chemical Society National Meeting, Orlando, Florida, August 25–29, 1996.Google Scholar
  33. 33.
    Schoemakers, P. J. ; Oomen, J. L. L. M; Blomberg, J. ; Genuit, W. ; Van Velzen, G. “Comparison of Comprehensive Two-dimensional Gas Chromatography-Mass Spectrometry for the Characterization of Complex Hydrocarbon Mixtures”, J. Chromatogr. A 2000, 892, 29–46.CrossRefGoogle Scholar
  34. 34.
    Bateman, R. ; Bordoli, R. ; Gilbert, A. ; Hoyes, J. “An investigation into the accuracy of mass measurement on a Q-TOF mass spectrometer”, Adv. Mass Spectrom. 1998, 14, 1–10.Google Scholar
  35. 35.
    Bacaud, R. ; Rouleau, L. “Coupled Simulated Distillation-Mass Spectrometry for the Evaluation of Hydroconverted Petroleum Residues”, J. Chromatogr. A 1996, 750, 97–104.CrossRefGoogle Scholar
  36. 36.
    Ashe, T. R. ; Roussis, S. G. ; Fedora, J. W. ; Felsky, G. ; Fitzgerald, P. “Method for predicting chemical or physical properties of crude oils”, U. S. Patent No. 5,699,269, December 16, 1997.Google Scholar
  37. 37.
    Roussis, S. G. ; Fedora, J. W. ; Fitzgerald, W. P. “Direct method for determination of true boiling point distillation profiles of crude oils by gas chromatography/mass spectrometry”, U. S. Patent No. 5,808,180, September 15, 1998.Google Scholar
  38. 38.
    Roussis, S. G. ; Fitzgerald, W. P. “Gas Chromatographic Simulated Distillation-Mass Spectrometry for the Determination of the Boiling Point Distribution of Crude Oils”, Anal. Chem. 2000, 72, 1400–1409.CrossRefGoogle Scholar
  39. 39.
    Méndez, A. ; Piemonti, C; Dassori, C. G. ; Fernández, N. “Expanding the use of GC-MS beyond the separation capabilities of a chromatographic column. A system for crude oil assay and process control”, XV International Mass Spectrometry Conference, Barcelona, Spain,August 25-September 1, 2000.Google Scholar
  40. 40.
    Boduszynski, M. M. “Composition of heavy petroleum. 2. Molecular characterization”, Energy Fuels 1988, 2, 597–613.CrossRefGoogle Scholar
  41. 41.
    Altgelt, K. H. ; Boduszynski, M. M. Composition and analysis of heavy petroleum fractions, Marcel Dekken New York, 1994.Google Scholar
  42. 42.
    Petrakis, L. ; Allen, D. T. ; Gates, B. C. “Analysis of synthetic fuels for functional group determination”, Anal. Chem. 1983, 55, 1557–1564.CrossRefGoogle Scholar
  43. 43.
    Disanzo, F. P. ; Giarroco, V. J. “Analysis of pressurized gasoline-range liquid hydrocarbon samples by capillary column and PIONA analyzer gas chromatography”, J. Chromatogr. Sci. 1988, 26, 258–266.Google Scholar
  44. 44.
    Matisova, E. ; Juranyiova, E. “Analysis of multi-component mixtures by high resolution capillary gas chromatography and combined gas chromatography-mass spectrometry”, J. Chromatogr. A 1991, 552, 301–312.CrossRefGoogle Scholar
  45. 45.
    Beardslay, J. D. “Fuels, gaseous and liquid”, Anal. Chem. 1992, 57, 195RGoogle Scholar
  46. 46.
    Sazonova, M. L. ; Luskii, M. K. “Gas Chromatography determination of the composition of unfractionated natural hydrocarbon mixtures”, J. Chromatogr. 1986, 364, 267–298.CrossRefGoogle Scholar
  47. 47.
    Boduszynski, M. M. “Composition of heavy petroleum. 1. Molecular weight, hydrogen deficiency, and heteroatom concentration as a function of atmospheric equivalent boiling point up to 1400°F (760°C)”, Energy Fuels 1987, 1, 2–11.CrossRefGoogle Scholar
  48. 48.
    Malhotra, R. ; McMillen, D. F.; Tse, D. S.; St. John, G. A.; Coggiola, M. L.; Matsui, H. “An approach to chemical characterization of vacuum residues”, Prepr.-Am. Chem. Soc, Div. Pet. Chem. 1989, 34, 330–338.Google Scholar
  49. 49.
    McLean, M. A. ; Hsu C. S. “Combination of moving belt LC/MS and low voltage electron impact ionization for the characterization of heavy petroleum streams”, Proc. 38th ASMS Conf. Mass Spectrom. Allied Top. , Tucson AZ, June 3–8, 1990.Google Scholar
  50. 50.
    Hsu, C. S. ; Qian, K. ; Chen, Y. C. “An innovative approach to data analysis in hydrocarbon characterization by on-line liquid chromatography-mass spectrometry”, Anal. Chim. Acta 1992, 264, 79–89.CrossRefGoogle Scholar
  51. 51.
    Hsu, C. S. ; McLean, M. A. ; Qian, K. ; Aczel, T. ; Blum, S. C; Olmstead, W. N. ; Kaplan, L. H. ; Robbins, W. K. ; Schulz, W. W. “On-line liquid chromatography/mass spectrometry for heavy hydrocarbon characterization”, Energy Fuels 1991, 5, 395–398.CrossRefGoogle Scholar
  52. 52.
    Hsu, C. S. ; Qian K. “Molecular transformation in hydrotreating processes studied by on-line liquid chromatography/mass spectrometry”, Anal. Chem. 1992, 64, 2377–2333.CrossRefGoogle Scholar
  53. 53.
    Hsu, C. S. ; Qian K. “High boiling aromatic hydrocarbons characterized by liquid chromatography-thermospray-mass spectrometry”, Energy Fuels 1993, 7, 268–272.CrossRefGoogle Scholar
  54. 54.
    Hsu, C. S. “Novel characterization of petroleum resids by liquid chromatography coupled with mass spectrometry”, prep. ACS Div. Fuel Chem. 1997, 42, 390–393.Google Scholar
  55. 55.
    Liang, Z. ; Hsu, C. S. “Molecular speciation of saturates by online liquid chromatography-field ionization mass spectrometry”, Energy Fuels 1998, 12, 637–643.CrossRefGoogle Scholar
  56. 56.
    Bower, M. T. ; Marshall, A. G. ; McLafferty, F. W. “Mass spectrometry: recent advances and future directions”, J. Phys. Chem. 1996, 100, 12897–12910CrossRefGoogle Scholar
  57. 57.
    Little, D. “Exact mass measurements by flow injection ESMS with orthogonal acceleration-TOF mass detector”, Application Brief AB1. Micromass U. K.Google Scholar
  58. 58.
    Hsu, C. S. ; Green, M. “Fragment-Free accurate mass measurement of complex mixtures components by gas chromatography-field ionization-orthogonal acceleration time-of-flight mass spectrometry (GC/FI/oa-TOFMS): an unprecedent capability for mixture analysis”, Rapid Commun. Mass Spectrom. 2001, 15, 236–239.CrossRefGoogle Scholar
  59. 59.
    Roussis, S. “Automated tandem mass spectrometry by orthogonal acceleration TOF data acquisition and simultaneous magnet scanning for the characterization of petroleum mixtures”, Anal. Chem. 2001, 73, 3611–3623.CrossRefGoogle Scholar
  60. 60.
    Faubert, D. ; Paul, G. J. ; Giroux, J. ; Bertrand, M. J. “Selective fragmentation and ionization of organic compounds using an energy-tunable rare-gas metastable beam source”, J. Int. Mass Spectrom. Ion Process 1993, 124, 69–77.CrossRefGoogle Scholar
  61. 61.
    Faubert, D. ; Mousselmal, M. ; Roussis, S. G. ; Bertrand, M. J. “Comparison of MAB and EI for petroleum mass spectrometry”, Proc. 44th ASMS Conf. Mass Spectrom. Allied Top. , Portland, OR, May 12–16, 1996.Google Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • Aaron Mendez
    • 1
  • Jenny Bruzual
    • 1
  1. 1.Analytical Chemistry DepartmentPDVSA IntevepCaracasVenezuela

Personalised recommendations