Wafer Scale Nanoimprint Lithography

  • Lars Montelius
  • Babak Heidari
Part of the Nanostructure Science and Technology book series (NST)

Abstract

Nanoimprint lithography (NIL) got large attention when it was introduced 1, 2 since it de-scribed the possibility for a low cost parallel nanotechnology. It got even larger attention when it was reported that sub 10 nm features on a Si stamp could be replicated into a resist layer, which in turn had a profile allowing a lift-off process to be possible.3,4 More reports about NIL technology followed and soon also devices were reported made with NIL. 5, 6, 7 This development inspired a few research groups to initiate projects around NIL technology. Also related techniques such as micro contact printing and its relatives were further developed at this time. 8, 9 Several different nanoimprint machines, set-ups and processes were reported. Examples of this rich development are for instance the roller imprint, 10 Step and flash imprint lithography, 11 described multi-layer resist methods. 12 An interesting observation is that in most of the works reported so far (except the early works in ref. 2,3 above) the feature sizes have rather been closer to the 100 nm domain than to the 10 nm domain. Furthermore in most of the NIL experiments reported the de-scribed were made with stamps having areas of only one or a few square centimetre(s).1, 2, 3, 4, 5, 6, 7 In order to meet the demand from industries, there was thus a need to develop a large area NIL process.13 Here two alternatives exists, either use a full wafer single printing step procedure 14, 15, 16 or to utilize a step & repeat procedure.17 Still up to now, more than seven years ago after its introduction, very few reports of real large wafer scale NIL exists. The largest size of the wafers successfully printed is 6 inch 14, 15 and for these experiments two kinds of stamps has been used. The stamp was either a metal CD-master stamp or an de-scribed defined electroplated metal stamp having regions with lines at the nanometer scale distributed at few locations over the wafer. The printed pattern definition in the resist to be accurate.

Keywords

Porosity Nickel Microwave Silane Chromium 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S.Y. Chou, P. R. Krauss and P. J. Renstrom, Appl. Phys. Lett. 67, 3114 (1995), Science 272, 85 (1996).Google Scholar
  2. 2.
    S.Y. Chou, P.R. Krauss and P.J. Renstrom, J. Vac. Sci. techn. B14, 4129 (1996).Google Scholar
  3. 3.
    Stephen Y. Chou, Peter R. Krauss, Wei Zhang, Lingjie Guo and Lei Zhuang,J. Vac. Sci. Technol. B15, 2897 (1997).Google Scholar
  4. 4.
    S. Y. Chou and P. R. Krauss, Microelectron. Eng. 35, 237 (1997).CrossRefGoogle Scholar
  5. 5.
    P. R. Krauss and S. Y. Chou, Appl. Phys. Lett. 71, 3174 (1997).CrossRefGoogle Scholar
  6. 6.
    L. Kong, Q. Pan, B. Cui, M. Li and S. Y. Chou, Journ. Appl. Phys. 85, 5492 (1999).CrossRefGoogle Scholar
  7. 7.
    Z. Yu, S. J. Schablitsky and S. Y. Chou, Appl. Phys. Lett. 74, 2381 (1999).CrossRefGoogle Scholar
  8. 8.
    S. Brittain, K. Paul, X. Zhao and G. Whitesides, Physics World, p.31, (May 1998).Google Scholar
  9. 9.
    N. B. Larsen, H. Biebuyck, E. Delamarche and B. Michel, J. Am. Chem. Soc. 199, 3017 (1997).CrossRefGoogle Scholar
  10. 10.
    H. Tan, A. Gilbertson, S. Chou, J. Vac. Sci. Technol. B 16, 3926 (1998).CrossRefGoogle Scholar
  11. 11.
    T. Bailey, B. J. Choi, M. Colburn, M. Meissl, S. Shaya, J. G. Ekerdt, S. V. Sreenivasan, and C. G. Willson, J. Vac. Sci. Technol. B 18, 3572 (2000).CrossRefGoogle Scholar
  12. 12.
    X. Sun, L. Zhuang, W. Zhang, and S. Chou, J. Vac. Sci. Technol. B 16, 3922 (1998).CrossRefGoogle Scholar
  13. 13.
    Two EU projects have been concerned about wafer scale NIL, the NANOTECH and the CHANIL projects, both belonging to the IST-MELARI/NID initiatives and coordinated by one of the authors of this article (LM).Google Scholar
  14. 14.
    B. Heidari, I. Maximov, E.-L. Sarwe, and L. Montelius, J. Vac. Sci. Technol. B 17, 2961 (1999).CrossRefGoogle Scholar
  15. 15.
    B. Heidari, I. Maximov and L. Montelius, J. Vac. Sci. Technol. B18, 3557 (2000).Google Scholar
  16. 16.
    W. Zhang and S. Y. Chou, Appl. Phys. Lett. 79, 845 (2001).CrossRefGoogle Scholar
  17. 17.
    T. Haatainen, J. Ahopelto, G. Gruetzner, M. Fink and K. Pfeiffer, Proc. of SPIE, 3997 (2000).Google Scholar
  18. 18.
    Z. Yu, W. Wu, L. Chen and S. Y. Chou, J. Vac. Sci. Tecnol. B19, 2816 (2001).CrossRefGoogle Scholar
  19. 19.
    K. Pfeiffer, M. Fink, G. Ahrens, G. Grützner, F. Reuther, J. Seekamp, S. Zankovych, C.M. Sotomayor Torres, I. Maximov, M. Beck, M. Graczyk, L. Montelius, H. Schulz, H.-C. Scheer, F. Steingrüber, Micro-electronic Engineering 61–62, 393 (2002).Google Scholar
  20. 20.
    I Maximov, E-L Sarwe, M Beck, K. Deppert, M Graczyk, M.H. Magnusson, and L Montelius, Microelec-tron. Eng.61–62, 449 (2001).Google Scholar
  21. 21.
    H. Schulz, D. Lebedev, H.-C. Scheer, K. Pfeiffer, G. Bleidiessel, G. Grützner and J. Ahopelto, J. Vac. Sci. Technol. B 18, p 3582, (2000).CrossRefGoogle Scholar
  22. 22.
    H.-C. Scheer, H. Schulz, Microelectronic Engineering 56, 311–332 (2001).CrossRefGoogle Scholar
  23. 23.
    K.Pfeiffer, M.Fink, G.Grützner, G. Bleidiessel, H. Schulz, H.-C. Scheer, Microelectron Engineering, 57–58, pp 57–58 (2001).CrossRefGoogle Scholar
  24. 24.
    H.Schulz, H.-C. Scheer, T.Hoffmann, C.M.Sotomayor Torres, K.Pfeiffer, G. Bleidiessel, G. Grützner, CH. Cardinaud, F. Gaboriau, M.C. Peignon, J. Ahopelto, B. Heidari, J Vac Sci Technol B 18, 1861–1865 (2000).CrossRefGoogle Scholar
  25. 25.
    D. Lyebyedyev, H. Schulz, H.-C. Scheer, Mater. Sci. Eng. C 15, p 241 (2001).CrossRefGoogle Scholar
  26. 26.
    Ch. Finder, C. Mayer, H. Schulz, H.-C. Scheer, M. Fink, K. Pfeiffer, in GMM-Fachbericht 36, S. 195, VDE Verlag GmbH Berlin, 2002.Google Scholar
  27. Ch. Finder, M. Beck, J. Seekamp, K. Pfeiffer, P.Carlberg, I. Maximov, E.-L. Sarwe, S. Zankovic, C. Mayer, L.Montelius, C.M. Sotomayor Torres, Optical Microscopy for quality control in nanoimprint lithography, in preparation for Microelectronic Engineering.Google Scholar
  28. 28.
    C. Cardinaud, M.C. Peignon, P.Y. Tessier, Appl. Surf. Sci. 164 72–83 2000.CrossRefGoogle Scholar
  29. 29.
    F. Gaboriau, M.C. Peignon, A. Barreau, G. Turban, C. Cardinaud, K. Pfeiffer, G. Bleidissel, G. Gruetzner, Microelectronic Engineering 53, 501–505 (2000).CrossRefGoogle Scholar
  30. S. Zankovich, J.Seekamp, S. Romanov, C.M. Sotomayor Torres, I. Maximov, M. Beck, I Shorubalko, L. Montelius, D. Reuter, P. Schafmeister, A.Wiek, Nanoimprint-Induced Effects on Electrical and Optical Properties of Quantum Well Structures, to appear in Microelectron Engineering.Google Scholar
  31. 31.
    H.C.Scheeer, H.Schultz, H.Hoffmann and C.M.Sotomayor-Torres, J. Vac. Sci. Technol. B16, 3917 (1998).Google Scholar
  32. 32.
    Y. Hirai, M. Fujiwara, T. Okuno and Y. Tanaka, m. Endo, S.Irie, K.Nakagawa and M.Sasago, J. Vac. Sci. Technol. B19, 2811(2001).Google Scholar
  33. 33.
    J. Bicerano, Prediction of Polymer Properties, 2d edition (Marcel Dekker, Inc., New York) 1996.Google Scholar
  34. 34.
    L.J. Fetters, D.J. Lohse, D. Richter, T.A. Witten and A. Zirkel, Macromolecules 27, 4639, (1994).CrossRefGoogle Scholar
  35. 35.
    Paolo Antognetti. Power Integrated Circuits. McGraw-Hill 1986.Google Scholar
  36. 36.
    Carl Fjelkner, “Design, Fabrication, and Characterisation of an integrated surface temperature sensing device” M Sc thesis at Solid State Physics, Lund University 1999.Google Scholar
  37. 37.
    Babak Heidari, Lena Hallén. SOA-Kurvor för DMOS-TransistorerM Sc thesis at Solid State Physics, Lund University, Lund 1991.Google Scholar
  38. 38.
    William B. Burford III, H. Grey Verner. Semiconductor Junction and Devices. McGraw-Hill Book Com-pany New York 1965.Google Scholar
  39. 39.
    S. M. Sze. Semiconductor Devices Physics and Technology. John Wiley & Sons New York 1985.Google Scholar
  40. 40.
    Max J. O. Strutt. Semiconductor Devices volume one Semiconductors and Semiconductor Diodes. Aca-demic Press New York 1966.Google Scholar
  41. 41.
    Paolo Antognetti. Power Integrated Circuits. McGraw-Hill 1986Google Scholar
  42. 42.
    W.E. Newell. Transient Thermal Analysis of Solid-State Power Devices - Making a Dreaded Process Easy. IEEE Power Electronic Specialists Conference. pp 234 (1975).Google Scholar
  43. 43.
    L. Montelius, B. Heidari, M. Graczyk, T. Ling, I. Maximov, and E-L. Sarwe, SPIE Proceedings Microtech-nology, 28 Feb-2 March, 2000.Google Scholar
  44. 44.
    Obducat AB, Malmö, Sweden.Google Scholar
  45. 45.
    R.B. Bird, R.C. Armstrong, O. Hassager, 123Fluid Mechanics, Dynamics, of Polymeric Liquids, Vol. 1, (John Wiley) (1987).Google Scholar
  46. 46.
    P. Ruchhoeft, M. Colburn, B Choi, H. Nounu, S. Johanson, T. Bailey, S. Damle, M. Stewart, J. Ekerdt, J.C. Wolfe, C.G. Willson, J. Vac. Sci. Technol. B 17, 2965 (1999).CrossRefGoogle Scholar
  47. 47.
    L.J. Durney, editor, Electroplating Engineering Handbook, 4th edition (Van Nostrand Reinhold, New York) 1984.Google Scholar
  48. 48.
    M Beck, M Grazcyk, I Maximov, E-L Sarwe, TGILing, M. Keil and L Montelius, 1st International IEEE-Nanotechnology conf, Hawaii Oct 28 (2001); Microelectron. Eng. 61–62, 441 (2002).CrossRefGoogle Scholar
  49. 49.
    H. Schulz, H.-C. Scheer, T. Hoffmann, CM. Sotomayor Torres, K. Pfeiffer, G. Bleidiessel, G. Grützner, Ch. Cardinaud, F. Gaboriau, M.-C. Peignon, J. Ahopelto, B. Heidari, J. Vac. 123Sci. Technol. B18, 1861 (2000).Google Scholar
  50. 50.
    K. Pfeiffer, M. Fink, G. Bleidiessel, G. Gruetzner, H. Schulz, H.-C. Scheer, CM. Sotomayor Torres; T. Hoffmann, Ch. Cardinaud, F. Gaboriau, Microelectr. Engineering 53, 411 (2000).CrossRefGoogle Scholar
  51. 51.
    V. J. Novotny, T. E. Karis, Appl. Phys. Lett. 71, 7 (1997).CrossRefGoogle Scholar
  52. 52.
    A. Mueller, T. Kowalewski, and K. Wooley, 123Macromolecules 31, 3 (1998).CrossRefGoogle Scholar
  53. 53.
    G. J. Vancso*; Lattice Imaging of Self-Assembled Monolayers of Partially Fluorinated Disulfides and Thiols on Sputtered Gold by Atomic Force Microscopy, Langmuir; 13, 3769 (1997).CrossRefGoogle Scholar
  54. 54.
    John F. Rabolt; Vapor Phase Self-Assembly of Fluorinated Monolayers on Silicon and Germanium Oxide, Langmuir; 13, 1877(1997).Google Scholar
  55. 55.
    Chidsey, C. E. D.; Bertozzi, C. R.; Putvinski, T. M.; Mujsce, A. M. J. Am. Chem. Soc. 112, 4301 (1990).CrossRefGoogle Scholar
  56. 56.
    I. Maximov, E.-L. Sarwe, M. Beck, K. Deppert, M. Grazcyk, M. H. Magnusson and L Montelius Micro-electron, Eng. 61–62, 449 (2002).Google Scholar
  57. 57.
    Can be purchased from e.g.www.abcr.de
  58. 58.
    MicroResistTechnologies in Berlin sell a variety of imprint resists dedicated for various NIL processes,AVISO www.mrt.de.com/html/applications/niveau/global_regional_uk.html
  59. 59.
    T Mäkelä, T. Haatainen, J. Ahopelto and H. Isotalo, J. Vac. Sci. Technol. B19, 487 (2001).Google Scholar
  60. 60.
    Nikolai Gaadegard, Ph D Thesis defense, June 2002, Copenhagen University.Google Scholar
  61. 61.
    S. Matsui, Y Igaku, H. Ishigaki, J. Fujita, M. Ishida, Y. Ochiai, M. Komuro and H. Hiroshima, J. Vac. Sci. Technol B19, 2801(2001).Google Scholar
  62. 62.
    H. Schulz, M. Wissen, N. Roos, H.-C. Scheer, K. Pfeiffer, G. Gruetzner, Low-Temperature Wafer-Scale. ’WARM’ Embossing for Mix & Match with UV-Lithography, Proceedings of the SPIE 4688, p 24 (2002).Google Scholar
  63. 63.
    D. Y. Khang and H. H. Lee, Appl. Phys. Lett. 76, 870 (2000).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • Lars Montelius
    • 1
  • Babak Heidari
    • 1
  1. 1.Div. of Solid State Physics & The Nanometer ConsortiumLund UniversityLundSweden

Personalised recommendations