Combined Approaches for Nanoelectronic Device Fabrication

Electron beam lithography and nanoimprint lithography
  • I. Martini
  • M. Kamp
  • A. Forchel
Part of the Nanostructure Science and Technology book series (NST)


Lithography plays a key roll in modern IC manufacturing industry. The increased performance of modern IC devices is strongly linked to an increase of lithographic resolution. For lithographic mask production and patterning of features down to a few performance, electron beam lithography (EBL) is a well established technique. Transferring the mask pattern into resist on an industrial high throughput level is mainly the domain of optical lithography. Using resolution enhancement techniques (RET), it possible to achieve dimensions of the order of 100 nm. According to the International Technology Roadmap for Semiconductors (ITRS) sub 100 nm patterning is a great demand for next generation lithography (NGL). Advanced technologies, such as extreme ultraviolet lithography (EUV), X-ray lithography (XRL), electron projection lithography (EPL), and ion projection lithography (IPL) are pushing towards into the domain of 35 nm.1


Electron Beam Lithography Alignment Error Nanoimprint Lithography Optical Lithography Quantum Point Contact 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    The International Technology Roadmap for Semiconductors
  2. 2.
    S.Y. Chou, P.R. Krauss, P.J. Renstrom, Appl. Phys. Lett. 67 (21), 3114 (1995).CrossRefGoogle Scholar
  3. 3.
    J. Haisma, M. Verheijen, K. van den Heuvel, J. Vac. Sci. Technol. B 14(6), 4124 (1996).CrossRefGoogle Scholar
  4. 4.
    H.-C. Scheer, H. Schulz, T. Hoffmann, C.M. Sotomayor Torres, J. Vac. Sci. Technol. B 16(6), 3917 (1998).CrossRefGoogle Scholar
  5. 5.
    R.W. Jaszewski, H. Schift, J. Gobrecht, P. Smith, Microelectron. Eng. 41/42 575 (1998).CrossRefGoogle Scholar
  6. 6.
    X. Sun, L. Zhung, W. Zhang, S.Y. Chou, J. Vac. Sci. Technol. B 16(6), 3922 (1998).CrossRefGoogle Scholar
  7. 7.
    D. Eisert, W. Braun, S. Kuhn, J. Koeth, A. Forchel, Microelectron. Eng. 46, 179 (1999).CrossRefGoogle Scholar
  8. 8.
    Lebib, Y. Chen, J. Bourneix, F. Carcenac, E. Cambril, L. Couraud, H. Launois, Microelectron. Eng. 46 319 (1999).Google Scholar
  9. 9.
    S.Y. Chou, P.R. Krauss, W. Zhang, L. Guo, L. Zhuang, J. Vac. Sci. Technol. B. 15(6), 2897 (1997).CrossRefGoogle Scholar
  10. 10.
  11. 11.
    B.J. van Wees, H. van Houten, C.W.J. Beenakker, J.G. Willian, L.P. Kouwenhoven, D. van der Marel, and C.T. Foxon, Phys. Rev. Lett. 60 (9), 848 (1988).CrossRefGoogle Scholar
  12. 12.
    D.A. Wharam, T.J. Thornton, R. Newbury, M. Pepper, H. Ahmed, J.E.F. Forst, D.G. Hasko, D.C. Peacock, D.A. Ritchie, and G.A. Jones, J. Phys. C. 21, L209 (1988).CrossRefGoogle Scholar
  13. 13.
    H. van Houten, C.W.J. Beenakker and B.J. van Wees, Nanostructured Systems, Semiconductor and Semimetals 35, 9 (1992).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • I. Martini
    • 1
  • M. Kamp
    • 1
  • A. Forchel
    • 1
  1. 1.Lehrstuhl für Technische PhysikBayerische Julius-Maximilians-UniversitätWürzburgGermany

Personalised recommendations