Skip to main content

Abstract

Endocannabinoids1 are endogenous substances that bind to and activate at least one of the two high affinity membrane receptors discovered for marijuana’s psychoactive principle, (-)-¡õ9-tetrahydrocannabinol (THC). Three types of endocannabinoids have been described so far in both nervous and non-nervous tissues: 1) the anandamides,1 i.e. amides of ethanolamine with polyunsaturated fatty acids with at least twenty carbon atoms and three 1,4-diene double bonds, of which the C20: 4 homologue, arachi-donoylethanolamide (AEA)2,3 has been most thoroughly studied; 2) 2-arachidonoyl glycerol (2-AG)4,5; and 3) the recently described 2-arachidonyl glyceryl ether, or noladin ether,6 whose pharmacological activity as an endocannabinoid has not yet been thoroughly assessed. An entirely saturated AEA congener, palmitoylethanolamide (PEA), was proposed to act as an endocannabinoid at yet-to-be-characterized receptors, but the precise mechanism(s) underlying the THC-like anti-inflammatory and analgesic activity of this compound is(are) still a matter for speculation.7

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. V. Di Marzo, ‘Endocannabinoids’ and other fatty acid derivatives with cannabimimetic properties: biochemistry and possble physiopathological relevance, Biochim. Biophys. Acta 1392:153 (1998).

    Article  PubMed  Google Scholar 

  2. W. A. Devane, L. Hanus, A. Breuer, R. G. Pertwee, L. A. Stevenson, G. Griffin, D. Gibson, A. Mandelbaum, A. Etinger, and R. Mechoulam, Isolation and structure of a brain constituent that binds to the cannabinoid receptor, Science 258:1946 (1992).

    Article  PubMed  CAS  Google Scholar 

  3. L. Hanus, A. Gopher, S. Almog, and R. Mechoulam, Two new unsaturated fatty acid ethanolamides in brain that bind to the cannabinoid receptor, J. Med. Chem. 36:3032 (1993).

    Article  PubMed  CAS  Google Scholar 

  4. R. Mechoulam, S. Ben-Shabat, L. Hanus, M. Ligumsky, N. E. Kaminski, A. R. Schatz, A. Gopher, S. Almog, B. R. Martin, D. R. Compton, R. G. Pertwee, G. Griffin, M. Bayewitch, J. Barg, and Z. Vogel, Identifation of an endogenous 2-monoglyceride, present in canine gut, that binds to cannabinoid receptors, Biochem. Pharmacol. 50:83 (1995).

    Article  PubMed  CAS  Google Scholar 

  5. T. Sugiura, S. Kondo, A. Sukagawa, S. Nakane, A. Shinoda, K. Itoh, A. Yamashita, and K. Waku, 2-Arachidonoylglycerol: a possible endogenous cannabinoid receptor ligand in brain, Biochem. Biophys. Commun. 215:89 (1995).

    Article  CAS  Google Scholar 

  6. L. Hanus, S. Abu-Lafi, E. Fride, A. Breuer, Z. Vogel, D. E. Shalev, I. Kustanovich, R. Mechoulam R., 2-arachidonyl glyceryl ether, an endogenous agonist of the cannabinoid CB1 receptor. Proc. Natl. Acad. Sci. V.S.A. 98:3662 (2001).

    Article  CAS  Google Scholar 

  7. D. M. Lambert, and V. Di Marzo, The palmitoylethanolamide and oleamide enigmas: are these two fatty acid amides cannabimimetic? Curr. Med. Chem.; 6:757 1999.

    PubMed  CAS  Google Scholar 

  8. V. Di Marzo, Biosynthesis and inactivation of endocannabinoids: relevance to their proposed role as neuromodulators. Life Sci. 65:645 (1999).

    Article  PubMed  Google Scholar 

  9. V. Di Marzo, A. Fontana, H. Cadas, S. Schinelli, G. Cimino, J. C. Schwartz, and D. Piomelli D., Formation and inactivation of endogenous cannabinoid anandamide in central neurons. Nature 372:686 (1994).

    Article  PubMed  Google Scholar 

  10. G. Petersen, and H. S. Hansen, N-acylphosphatidylethanolamine-hydrolysing phospholipase D lacks the ability to transphosphatidylate. FEBS Lett. 455:41 (1999).

    Article  PubMed  CAS  Google Scholar 

  11. N. Ueda, Q. Liu, K Yamanaka K., Marked activation of the N-acyl-phosphatidyl-ethanolamine-hydrolyzing phosphodiesterase by divalent cations. Biochim. Biophys. Acta 1532:121 (2001).

    Article  PubMed  CAS  Google Scholar 

  12. H. H. Schmid, P. C. Schmid, V. Natarajan, 1996 The N-acylation-phosphodiesterase pathway and cell signalling. Chem. Phys. Lipids 80:133.

    Article  PubMed  CAS  Google Scholar 

  13. V. Di Marzo, L. De Petrocellis, T. Sugiura, and Waku, Potential biosynthetic connections between the two cannabimimetic eicosanoids, anandamide and 2-arachidonoyl-glycerol, in mouse neuroblastoma cells. Biochem. Biophys. Res. Commun. 227:281 (1996).

    Article  PubMed  Google Scholar 

  14. N. Stella, P. Schweitzer P.D. Piomelli, A second endogenous cannabinoid that modulates long-term potentiation. Nature 388:773 (1997).

    Article  PubMed  CAS  Google Scholar 

  15. T. Bisogno, D. Melck, L. De Petrocellis, and V. Di Marzo, Phosphatidic acid as the biosynthetic precursor of the endocannabinoid 2-arachidonoylglycerol in intact mouse neuroblastoma cells stimulated with ionomycin, J. Neurochem. 72:2113 (1999).

    Article  PubMed  CAS  Google Scholar 

  16. R. G. Pertwee, Pharmacology of cannabinoid CB1 and CB2 receptors, Pharmacol. Ther. 74:129 (1997).

    PubMed  CAS  Google Scholar 

  17. M. Herkenham, A. B. Lynn, M. D. Little, M. R. Johnson, L. S. Melvin, B. R. de Costa, and K. C. Rice, Cannabinoid receptor localization in brain, Proc. Natl. Acad. Sci. U.S.A. 87:1932 (1990).

    Article  PubMed  CAS  Google Scholar 

  18. F. Maingret, A. J. Patel, M. Lazdunski, and E. Honore, The endocannabinoid anandamide is a direct and selective blocker of the background K(+) channel TASK-1, EMBO J. 20:47 (2001).

    Article  PubMed  CAS  Google Scholar 

  19. J. Chemin, A. Monteil, E. Perez-Reyes, J. Nargeot, and P. Lory P, Direct inhibition of T-type calcium channels by the endogenous cannabinoid anandamide, EMBO J. 20:7033 (2001).

    Article  PubMed  CAS  Google Scholar 

  20. P. M. Zygmunt, J. Petersson, D. A. Andersson, H. Chuang, M. Sorgard, V. Di Marzo, D. Julius, and E. D. Hogestatt, Vanilloid receptors on sensory nerves mediate the vasodilator action of anandamide, Nature 400:452 (1999).

    Article  PubMed  CAS  Google Scholar 

  21. D. Smart, M. J. Gunthorpe, J. C. Jerman, S. Nasir, J. Gray, A. I. Muir, J. K. Chambers, A. D. Randall, and J. B. Davis, The endogenous lipid anandamide is a full agonist at the human vanilloid receptor (hVR1), Br. J. Pharmacol. 129:227 (2000).

    Article  PubMed  CAS  Google Scholar 

  22. V. Di Marzo, T. Bisogno, and L. De Petrocellis L., Anandamide: some like it hot, Trends Pharmacol. Sci. 22:346 (2001).

    Article  PubMed  Google Scholar 

  23. V. Di Marzo, L. De Petrocellis, F. Fezza, A. Ligresti, and T. Bisogno, Anandamide Receptors, ProstaglLeukotr. Essent. Fatty Acids., 66:377–391 (2002).

    Article  Google Scholar 

  24. L. De Petrocellis, T. Bisogno, M. Maccarone, J. D. Davis, A. Finazzi-Agro, and V. Di Marzo, The activity of anandamide at vanilloid VR1 receptors requires facilitated transport across the cell membrane and is limited by intracellular metabolism, J. Biol. Chem. 276:12856 (2001).

    Article  PubMed  Google Scholar 

  25. V. Di Marzo, T. Bisogno, T. Sugiura, D. Melck, and L. De Petrocellis, The novel endogenous cannabinoid 2-arachidonoylglycerol is inactivated by neuronal-and basophil-like cells: connections with anandamide, Biochem. 7.331:15(1998).

    Google Scholar 

  26. C. J. Hillard, and A. Jarrahian, The movement of N-arachidonoylethanolamine (anandamide) across cellular membranes, Chem. Phys. Lipids 108:123 (2000).

    Article  PubMed  CAS  Google Scholar 

  27. F. Fezza, T. Bisogno, A. Minassi, G. Appendino, R. Mechoulam, and V. Di Marzo, Inactivation mechanisms and a sensitive method for the quantification of the putative novel endocannabinoid, noladin ether, in rat brain tissue and cells, FEBS Letts., 513:294–298 (2002).

    Article  CAS  Google Scholar 

  28. C. J. Hillard, W. S. Edgemond, A. Jarrahian, and W. B. Campbell, Accumulation of N-arachidonoylethanolamine (anandamide) into cerebellar granule cells occurs via facilitated diffusion, J. Neurochem. 69:631 (1997).

    Article  PubMed  CAS  Google Scholar 

  29. B. F. Cravatt, D. K. Giang, S. P. Mayfield, D. L. Boger, R. A. Lerner, and N. B. Gilula, Molecular characterization of an enzyme that degrades neuromodulatory fatty-acid amides, Nature 384:83 (1996).

    Article  PubMed  CAS  Google Scholar 

  30. N. Ueda, R. A. Puffenbarger, S. Yamamoto, and D. G. Deutsch, The fatty acid amide hydrolase (FAAH), Chem. Phys. Lipids 108:107 (2000).

    Article  PubMed  CAS  Google Scholar 

  31. B. F. Cravatt, K. Demarest, M. P. Patricelli, M. H. Bracey, D. K. Giang, R. R. Martin, and A. H. Lichtman, Supersensitivity to anandamide and enhanced endogenous cannabinoid signaling in mice lacking fatty acid amide hydrolase, Proc. Natl Acad. Sci. U.S.A. 98:9371 (2001).

    Article  PubMed  CAS  Google Scholar 

  32. V. Di Marzo, L. De Petrocellis, and T. Bisogno, Emerging Therapeutic Targets from the Endocannabinoid System. 1. Molecular bases of endocannabinoid formation, action and inactivation, and development of selective inhibitors, Emerging Therapeutic Targets 5:241 (2001).

    Article  Google Scholar 

  33. A. C. Howlett, and S. Mukhopadhyay, Cellular signal transduction by anandamide and 2-arachidonoylglycerol, Chem. Phys. Lipids 108:53 (2000).

    Article  PubMed  CAS  Google Scholar 

  34. V. Di Marzo, D. Melck, T. Bisogno, L. De Petrocellis, Endocannabinoids: endogenous cannabinoid receptor ligands with neuromodulatory action, Trends Neurosci. 21:521 (1998).

    Article  PubMed  Google Scholar 

  35. E. Schlicker, and M. Kathmann, Modulation of transmitter release via presynaptic cannabinoid receptors; Trends Pharmacol. Sci. 22:565 (2001).

    Article  PubMed  CAS  Google Scholar 

  36. C. Levenes, H. Daniel, P. Soubrie, and F. Crepel, Cannabinoids decrease excitatory synaptic transmission and impair long-term depression in rat cerebellar Purkinje cells, J. Physiol. 510:867 (1998).

    Article  PubMed  CAS  Google Scholar 

  37. B. Szabo, I. Wallmichrath, P. Mathonia, and C. Pfreundtner, Cannabinoids inhibit excitatory neurotransmission in the substantia nigra pars reticulata, Neuroscience 97:89 (2000).

    Article  PubMed  CAS  Google Scholar 

  38. V. Morisset, and L. Urban, Cannabinoid-induced presynaptic inhibition of glutamatergic EPSCs in substantia gelatinosa neurons of the rat spinal cord, J. NeurophysioL 86:40 (2001).

    PubMed  CAS  Google Scholar 

  39. D. Robbe, G. Alonso, F. Duchamp, J. Bockaert, and O. J. Manzoni, Localization and mechanisms of action of cannabinoid receptors at the glutamatergic synapses of the mouse nucleus accumbens, J. Neurosci. 21:109(2001).

    Google Scholar 

  40. C. W. Vaughan, M. Connor, E. E. Bagley, and M. J. Christie, Actions of cannabinoids on membrane properties and synaptic transmission in rat periaqueductal gray neurons in vitro, Mol. Pharmacol. 57:288 (2000).

    PubMed  CAS  Google Scholar 

  41. N. Auclair, S. Otani, P. Soubrie, and F. Crepel, Cannabinoids modulate synaptic strength and plasticity at glutamatergic synapses of rat prefrontal cortex pyramidal neurons, J. NeurophysioL 83:3287 (2000).

    PubMed  CAS  Google Scholar 

  42. L. Ferraro, M. C. Tomasini, G. L. Gessa, B. W. Bebe, S. Tanganelli, and T. Antonelli, The cannabinoid receptor agonist WIN 55,212–2 regulates glutamate transmission in rat cerebral cortex: an in vivo and in vitro study, Cereh Cortex; 11:728(2001).

    Google Scholar 

  43. N. Hajos, C. Ledent, and T. F. Freund, Novel cannabinoid-sensitive receptor mediates inhibition of glutamatergic synaptic transmission in the hippocampus, Neuroscience 106:1(2001).

    Google Scholar 

  44. P. K. Chan, S. C. Chan, and W. H. Yung, Presynaptic inhibition of GABAergic inputs to rat substantia nigra pars reticulata neurones by a cannabinoid agonist, Neuroreport 9:671 (1998).

    Article  PubMed  CAS  Google Scholar 

  45. K. Tsou, K. Mackie, M. C. Sanudo-Pena, and J. M. Walker, Cannabinoid CB1 receptors are localized primarily on cholecystokinin-containing GABAergic interneurons in the rat hippocampal formation, Neuroscience 93:969 (1999).

    Article  PubMed  CAS  Google Scholar 

  46. I. Katona, B. Sperlagh, Z. Magloczky, E. Santha, A. Kofalvi, S. Czirjak, K. Mackie, E. S. Vizi, and T. F. Freund T. F., GABAergic interneurons are the targets of cannabinoid actions in the human hippocampus, Neuroscience 100:797 (2000).

    Article  PubMed  CAS  Google Scholar 

  47. C. W. Vaughan, I. S. McGregor, and M. J. Christie M, Cannabinoid receptor activation inhibits GABAergic neurotransmission in rostral ventromedial medulla neurons in vitro, Br. J. Pharmacol. 127:935 (1999).

    Article  PubMed  CAS  Google Scholar 

  48. E. A. Jennings, C. W. Vaughan, and M. J. Christie M. J., Cannabinoid actions on rat superficial medullary dorsal horn neurons in vitro, J. Physiol. 534:805 (2001).

    Article  PubMed  CAS  Google Scholar 

  49. J. Romero, R. de Miguel, J. A. Ramos, and J. J. Fernandez-Ruiz, The activation of cannabinoid receptors in striatonigral GABAergic neurons inhibited GABA uptake, Life Sci. 62:351 (1998).

    Article  PubMed  CAS  Google Scholar 

  50. Y. P. Maneuf, J. E. Nash, A. R. Crossman, and J. M. Brotchie, Activation of the cannabinoid receptor by delta 9-tetrahydrocannabinol reduces gamma-aminobutyric acid uptake in the globus pallidus, Eur. J. Pharmacol 308:16 (1996).

    Article  Google Scholar 

  51. R. I. Wilson, and R. A. Nicoll, Endogenous cannabinoids mediate retrograde signalling at hippocampal synapses, Nature 410:588 (2001).

    Article  PubMed  CAS  Google Scholar 

  52. A. C. Kreitzer, and W. G. Regehr, Retrograde inhibition of presynaptic calcium influx by endogenous cannabinoids at excitatory synapses onto Purkinje cells, Neuron 29:717 (2001).

    Article  PubMed  CAS  Google Scholar 

  53. M. A. Diana, C. Levenes, K. Mackie, and A. Marty, Short-Term Retrograde Inhibition of GABAergic Synaptic Currents in Rat Purkinje Cells Is Mediated by Endogenous Cannabinoids, J. Neurosci. 22:200 (2002).

    PubMed  CAS  Google Scholar 

  54. T. Maejima, K. Hashimoto, T. Yoshida, A. Aiba, and M. Kano, Presynaptic inhibition caused by retrograde signal from metabotropic glutamate to cannabinoid receptors, Neuron 31:463 (2001).

    Article  PubMed  CAS  Google Scholar 

  55. R. I. Wilson, G. Kunos, and R. A. Nicoll, Presynaptic specificity of endocannabinoid signaling in the hippocampus, Neuron 31:453 (2001).

    Article  PubMed  CAS  Google Scholar 

  56. N. Varma, G. C. Carlson, C. Ledent, and B. E. Alger, Metabotropic glutamate receptors drive the endocannabinoid system in hippocampus, J. Neurosci.21:RC188 (2001).

    PubMed  CAS  Google Scholar 

  57. A. S. Rice, Cannabinoids and pain, Curr. Opin. Investig. Drugs 2:399 (2001).

    PubMed  CAS  Google Scholar 

  58. R. G. Pertwee, Cannabinoid receptors and pain, Prog. Neurobiol 63:569 (2001).

    Article  PubMed  CAS  Google Scholar 

  59. C. Ledent, O. Valverde, G. Cossu, F. Petitet, J. F. Aubert, F. Beslot, G. A. Bohme, A. Imperato, T. Pedrazz-ini, B. P. Roques, G. Vassart, W, Fratta, and M. Parmentier, Unresponsiveness to cannabinoids and reduced addictive effects of opiates in CB1 receptor knockout mice, Science 283:401 (1999).

    Article  PubMed  CAS  Google Scholar 

  60. A. Zimmer, A. M. Zimmer, A. G. Hohmann, M. Herkenham, and T. I. Bonner, Increased mortality, hypoactivity, and hypoalgesia in cannabinoid CB1 receptor knockout mice, Proc. Natl. Acad. Sci. U.S.A. 96:5780 (1999).

    Article  PubMed  CAS  Google Scholar 

  61. J. M. Walker, S. M. Huang, N. M. Strangman, K. Tsou, and M. C. Sanudo-Pena, Pain modulation by release of the endogenous cannabinoid anandamide, Proc. Natl. Acad. Sci. U.S.A. 96:12198 (1999).

    Article  PubMed  CAS  Google Scholar 

  62. I. D. Meng, B. H. Manning, W. J. Martin, and H. L. Fields, An analgesia circuit activated by cannabinoids, Nature 395:381 (1998).

    Article  PubMed  CAS  Google Scholar 

  63. J. D. Richardson, L. Aanonsen, and K. M. Hargreaves, Hypoactivity of the spinal cannabinoid system results in NMDA-dependent hyperalgesia, J. Neurosci. 18:451 (1998).

    PubMed  CAS  Google Scholar 

  64. J. D. Richardson, S. Kilo,and K. M. Hargreaves, Cannabinoids reduce hyperalgesia and inflammation via interaction with peripheral CB1 receptors, Pain 75:111 (1998).

    Article  PubMed  CAS  Google Scholar 

  65. A. Calignano, G. La Rana, A. Giuffrida, and D. Piomelli, Control of pain initiation by endogenous cannabinoids, Nature 394:277 (1998).

    Article  PubMed  CAS  Google Scholar 

  66. L. Hanus, A. Breuer, S. Tchilibon, S. Shiloah, D. Goldenberg, M. Horowitz, R. G. Pertwee, R. A. Ross, R. Mechoulam, and E. Fride, HU-308: a specific agonist for CB(2), a peripheral cannabinoid receptor, Proc. Natl. Acad. Sci. U.S.A. 96:14228 (1999).

    Article  PubMed  CAS  Google Scholar 

  67. P. Beaulieu, T. Bisogno, S. Punwar, W. P. Farquhar-Smith, G. Ambrosino, V. Di Marzo, and A. S. Rice, Role of the endogenous cannabinoid system in the formalin test of persistent pain in the rat, Eur. J. Pharmacol. 396:85 (2000).

    Article  CAS  Google Scholar 

  68. W. P. Farquhar-Smith, and A. S. Rice, Administration of endocannabinoids prevents a referred hyperalgesia associated with inflammation of the urinary bladder, Anesthesiology 94:507 (2001).

    Article  PubMed  CAS  Google Scholar 

  69. A. Calignano, G. La Rana, and D. Piomelli, Antinociceptive activity of the endogenous fatty acid amide, palmitylethanolamide, Eur. J. Pharmacol. 419:191 (2001).

    Article  PubMed  CAS  Google Scholar 

  70. D. J. Mason, J. Lowe, and S. P. Welch, Cannabinoid modulation of dynorphin A: correlation to cannabinoid-induced antinociception, Eur. J. Pharmacol. 378:237 (1999).

    Article  PubMed  CAS  Google Scholar 

  71. S. P. Welch, and M. Eads, Synergistic interactions of endogenous opioids and cannabinoid systems, Brain Res. 848:183 (1999).

    Article  PubMed  CAS  Google Scholar 

  72. S. P. Welch, Characterization of anandamide-induced tolerance: comparison to delta 9-THC-induced interactions with dynorphinergic systems, Drug Alcohol Depend. 45:39 (1997).

    Article  PubMed  CAS  Google Scholar 

  73. V. Di Marzo, C. Breivogel, T. Bisogno, D. Melck, G. Patrick, Q. Tao, A. Szallasi, R. K. Razdan, and B. R. Martin, Neurobehavioral activity in mice of N-vanillyl-arachidonyl-amide, Eur. J. Pharmacol. 406:363 (2000).

    Article  PubMed  Google Scholar 

  74. J. W. Brooks, G. Pryce, T. Bisogno, S. I. Jaggar, D. J. R. Hankey, P. Brown, D. Bridges, C. Ledent, M. Bifulco, A. S. C. Rice, V. Di Marzo, and D. Baker, Arvanil-induced inhibition of spasticity and persistent pain: evidence for therapeutic non-VRl, non-CBi, non-CB2 sites of action, Eur. J. Pharmacol., 439:83–92 (2002).

    Article  PubMed  CAS  Google Scholar 

  75. M. Tognetto, S. Amadesi, S. Harrison, C. Creminon, M. Trevisani, M. Carreras, M. Matera, P. Geppetti, and A. Bianchi, Anandamide excites central terminals of dorsal root ganglion neurons via vanilloid receptor-1 activation, J. Neurosci. 21:1104 (2001).

    PubMed  CAS  Google Scholar 

  76. S. D. Gauldie, D. S. McQueen, R. Pertwee, and I. P. Chessell, Anandamide activates peripheral nociceptors in normal and arthritic rat knee joints, Br. J. Pharmacol. 132:617 (2001).

    Article  PubMed  CAS  Google Scholar 

  77. J. Harris, L. J. Drew, V. Chapman, Spinal anandamide inhibits nociceptive transmission via cannabinoid receptor activation in vivo, Neuroreport 11:2817 (2000).

    Article  PubMed  CAS  Google Scholar 

  78. V. Morisset, J. Ahluwalia, I. Nagy, and L. Urban, Possible mechanisms of cannabinoid-induced antinociception in the spinal cord, Eur. J. Pharmacol. 429:93 (2001).

    Article  PubMed  CAS  Google Scholar 

  79. J. Ahluwalia, L. Urban, M. Capogna, S. Bevan, and I. Nagy I., Cannabinoid 1 receptors are expressed in nociceptive primary sensory neurons, Neuroscience 100, 685 (2000).

    Article  PubMed  CAS  Google Scholar 

  80. B. F. Cravatt, O. Prospero-Garcia, G. Siuzdak, N. B. Gilula, S. J. Henriksen, D. L. Boger, R. A. Lerner, Chemical characterization of a family of brain lipids that induce sleep, Science 268:1506 (1995).

    Article  PubMed  CAS  Google Scholar 

  81. I. Fedorova, A. Hashimoto, R. A. Fecik, M. P. Hedrick, L. O. Hanus, D. L. Boger, K. C. Rice, and A. S. Basile, Behavioral evidence for the interaction of oleamide with multiple neurotransmitter systems, J. Pharmacol. Exp. Ther. 299:332 (2001).

    PubMed  CAS  Google Scholar 

  82. D. L. Boger, S. J. Henriksen, and B. F. Cravatt, Oleamide: an endogenous sleep-inducing lipid and prototypical member of a new class of biological signaling molecule,. Curr. Pharm. Des. 4:303 (1998).

    PubMed  CAS  Google Scholar 

  83. W. B. Mendelson, and A. S. Basile, The hypnotic actions of the ratty acid amide, oleamide, Neuropsycho-pharmacology 25:S36 (2001).

    Article  CAS  Google Scholar 

  84. J. F. Cheer, A. K. Cadogan, C. A. Marsden, K. C. Fone, and D. A. Kendall, Modification of 5-HT2 receptor mediated behaviour in the rat by oleamide and the role of cannabinoid receptors, Neuropharmacology 38:533 (1999).

    Article  PubMed  CAS  Google Scholar 

  85. W. B. Mendelson, and A. S. Basile, The hypnotic actions of oleamide are blocked by a cannabinoid receptor antagonist, euroreport 10:3237 (1999).

    Article  CAS  Google Scholar 

  86. R. Mechoulam, E. Fride, L. Hanus, T. Sheskin, T. Bisogno, V. Di Marzo, M. Bayewitch, and Z. Vogel, Anandamide may mediate sleep induction, Nature 389:25 (1997).

    Article  PubMed  CAS  Google Scholar 

  87. V. Santucci, J. J. Storme, P. Soubrie, and G. Le Fur, Arousal-enhancing properties of the CB1 cannabinoid receptor antagonist SR 141716A in rats as assessed by electroencephalographic spectral and sleep-waking cycle analysis, Life Sci. 58:PL103 (1996).

    Article  PubMed  CAS  Google Scholar 

  88. M. Martinez-Vargas, E. Murillo-Rodriguez, R. Gonzalez-Rivera, A. Landa, J. Velazquez-Moctezuma, O. Prospero-Garcia, and L. Navarro, Cannabinoid receptor 1 increases with sleep rebound, Soc. Neurosci. Abstr. 524.22 (2001).

    Google Scholar 

  89. E. Murillo-Rodriguez, A. Giuffrida, F. Desarnaud, O. Prospero-Garcia, and D. Piomelli, Diurnal variations of endogenous cannabinoid compounds in csf and brain regions of the rat, Soc. Neurosci. Abstr. 805.2 (2001)

    Google Scholar 

  90. G. Lees, M. D. Edwards, A. A. Hassoni, C. R. Ganellin, and D. Galanakis, Modulation of GABA(A) receptors and inhibitory synaptic currents by the endogenous CNS sleep regulator cis-9,10-octadecenoamide (cOA), Br. J. Pharmacol. 124:873 (1998).

    Article  PubMed  CAS  Google Scholar 

  91. A. D. Laposky, G. E. Homanics, A. Basile, and W. B. Mendelson, Deletion of the GABA(A) receptor beta 3 subunit eliminates the hypnotic actions of oleamide in mice, Neuroreport 12:4143 (2001).

    Article  PubMed  CAS  Google Scholar 

  92. M. D. Aceto, S. M. Scates, R. K. Razdan, B. R. Martin, Anandamide, an endogenous cannabinoid, has a very low physical dependence potential, J. Pharmacol. Exp. Ther. 287:598 (1998).

    PubMed  CAS  Google Scholar 

  93. T. W. Klein, B. Lane, C. A. Newton, and H. Friedman, The cannabinoid system and cytokine network, Proc. Soc. Exp. Biol. Med. 225:1 (2000).

    Article  PubMed  CAS  Google Scholar 

  94. G. Kunos, Z. Jarai, S. Batkai, S. K. Goparaju, E. J. Ishac, J. Liu, L. Wang, and J. A. Wagner, Endocannabinoids as cardiovascular modulators, Chem. Phys. Lipids 108:159 (2000).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

De Petrocellis, L., Bisogno, T., Di Marzo, V. (2003). Neuromodulatory Actions of Endocannabinoids in Pain and Sedation. In: Vuyk, J., Schraag, S. (eds) Advances in Modelling and Clinical Application of Intravenous Anaesthesia. Advances in Experimental Medicine and Biology, vol 523. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-9192-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-9192-8_19

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4830-6

  • Online ISBN: 978-1-4419-9192-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics