Skip to main content

Mechanisms of Male Mediated Developmental Toxicity Induced by Lead

  • Chapter
Advances in Male Mediated Developmental Toxicity

Abstract

Lead remains one of the most significant occupational and environmental hazards world-wide, despite major efforts to ban its use in gasoline and paints. While environmental exposures have generally fallen in countries such as Canada and the US, occupational exposures remain significant. Workers are exposed in major industries, such as mining, battery manufacture, and electronics; environmental exposures result from emissions to air from stationary sources such as smelters and incinerators, contamination of drinking water from lead plumbing, contact with lead based paint, and leaching of lead from ceramics and glassware. Over the past 10 years, many countries have adopted public health guidance to prevent lead poisoning in children, using current epidemiological and toxicological information to set a blood lead level of 10 mcg/dL as an indicator of potentially toxic exposures. However, occupational guidelines and standards adopted to prevent adult lead toxicity have not been changed for over 20 years. In most developed countries, occupational exposures are set to prevent blood lead elevations above 40 or 50 mcg/dL. These exposures are clearly unsafe since effects on neurological, renal, and nervous system functions have been documented in adults with these levels of lead in blood (WHO, 1990)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  • Alexander, B.H., Checkoway, H., van Netten, C., Kaufman, J.D., Vaughan, T.L., Mueller, B.A., Faustman, E.M., 1996, Paternal occupational lead exposure and pregnancy outcome. Int J Occup Environ Health. 2:280–285.

    PubMed  Google Scholar 

  • Anderson, L.M, Kasprzak, K.S., and Rice, J.M., 1994, Preconception exposure of males and neoplasia in their progeny: effects of metals and consideration of mechanisms, in: Male-mediated developmental toxicity, A.F. Olshan and D.R. Mattison, eds., Plenum Press, New York, 129–140.

    Chapter  Google Scholar 

  • Balhorn, R., 1990, Mammalian protamines: Structure and molecular interactions, in; Molecular Biology of Chromosome Function, K.W. Adolph, ed., Springer, New York, 366–395.

    Google Scholar 

  • Balhorn, R., Reed, S., and Tanphaichitr, N., 1988, Aberrant protamine l/protamine2 ratios in sperm of infertile human males. Experientia. 44:52–55.

    Article  PubMed  CAS  Google Scholar 

  • Bal, W., Jezowska-Bojczuk, M., and Kasprzak, K.S., 1997, Binding of nickel(II) and copper (II) to the Nterminal sequence of human protamine HP2. Chem Res Toxicol. 10:906–914.

    Article  PubMed  CAS  Google Scholar 

  • Bartolomei, M.S. and Tilghman, S.M., 1997, Genomic imprinting in mammals. Annu Rev Genet. 31:493–525.

    Article  PubMed  CAS  Google Scholar 

  • Bianchi, F., Rousseaux-Prevost, R., Sautiere, P., and Rosseaux, J., 1992, P2 protamines from human sperm are zinc-finger proteins with one Cys2/His2 motif. Biochem Biophys Res Commun. 182:540–547.

    Article  PubMed  CAS  Google Scholar 

  • Brady, K., Herrera, Y., and Zenick, H., 1975, Influence of paternal lead exposure on subsequent learning ability of offspring. Pharmacol Biochem Behav. 3:561–565.

    Article  PubMed  CAS  Google Scholar 

  • CDC, 1999, Adult blood lead epidemiology and surveillance — United States, second and third quarters, 1998, and annual 1994-1997. MMWR. 48:213–223.

    Google Scholar 

  • De Yebra, L., Ballescá, J.L., Vanrell, J.A., Corzett, M., Balhorn, R., and Oliva, R., 1998, Detection of P2 precursors in the sperm cells of infertile patients who have reduced protamine P2 levels. Fertil Steril. 69:755–759.

    Article  PubMed  Google Scholar 

  • Faustman, E. and Olshan, A., 1993, Male-mediated developmental toxicity. Annu Rev Public Health. 14:159–181.

    Article  PubMed  Google Scholar 

  • Foster, W.G., McMahon, A., and Rice, D.C., 1996, Sperm chromatin structure is altered in cynomolgus monkeys with environmentally relevant blood lead levels. Toxicol Ind Health. 12:723–735.

    PubMed  CAS  Google Scholar 

  • Gandley, R.E., Anderson, L.D., and Silbergeld, E.K., 1999, Lead: Male-mediated effects on reproduction and development in the rat. Environ Res. 80:355–363.

    Article  PubMed  CAS  Google Scholar 

  • Gatewood, J.M., Schroth, G.P., Schmid, C.W., and Bradbury, E.M., 1990, Zinc-induced secondary structure transitions in human sperm protamines. J Biol Chem. 265:20667–20672.

    PubMed  CAS  Google Scholar 

  • Georgiades, P., Watkins, M., Burton, G.J., and Ferguson-Smith, A.C., 2001, Roles of genomic imprinting and the zygotic genome in placental development. Proc Natl Acad Sci USA. 98:4522–4527.

    Article  PubMed  CAS  Google Scholar 

  • Goering, P.L., 1993, Lead-protein interactions as a basis for lead toxicity. Neurotoxicology. 14:45–60.

    PubMed  CAS  Google Scholar 

  • Hanas, J.S., Rodgers, J.S., Bantle, J.A., and Cheng, Y.G., 1999, Lead inhibition of DNA-binding mechanism of Cys(2)His(2) zinc finger proteins. Mol Pharmacol. 56:982–988.

    PubMed  CAS  Google Scholar 

  • Hartwig, A., 1994, Role of DNA repair inhibition in lead-and cadmium-induced genotoxicity: a review. Environ Health Perspect. 1-2:45–50.

    Google Scholar 

  • Hernández-Ochoa, I., García-Vargas, G., Morán-Martínez, J., Rubio-Andrade, M., Vera, E., López-Carillo, L., Cebrián, M., and Quintanilla-Vega, B., 2001, Semen quality in environmentally metal-exposed men in northern México. The Toxicologist. 60:386.

    Google Scholar 

  • Irgens, A., Kruger, K., Skorve, A.H., and Irgens, L.M., 2000, Birth defects and paternal occupational exposure. Hypotheses tested in a record linkage based dataset. Acta Obstet Gynecol Scand. 79:465–470.

    Article  PubMed  CAS  Google Scholar 

  • Ishihara, K., Alkondon, M., Montes, J.G., and Albuquerque, E.X., 1995, Ontogenically related properties of N-methyl-D-aspartate receptors in rat hippocampal neurons and the age-specific sensitivity of developing neurons to lead. J Pharmacol ExpTherap. 273:1459–1470.

    CAS  Google Scholar 

  • Jedrusik, M.A. and Schulze, E., 2001, A single histone H l isoform (H1.1) is essential for chromatin silencing and germ line development in Caenorhabditis elegans. Development. 128:1069–1080.

    CAS  Google Scholar 

  • Johansson, L. and Pellicciari, C.E., 1988, Lead-induced changes in the stabilization of the mouse sperm chromatin. Toxicology. 51:11–24.

    Article  PubMed  CAS  Google Scholar 

  • Johansson, L., and Wide, M., 1986, Long-term exposure of the male mouse to lead: effects on fertility. Environ Res. 41:481–487.

    Article  PubMed  CAS  Google Scholar 

  • Johnson, F.M., 1998, The genetic effects of environmental lead. Mutat Res. 410:123–140.

    Article  PubMed  CAS  Google Scholar 

  • Kristensen, P., Irgens, L.M., Daltveit, A.K., and Andersen, A., Perinatal outcome among children of men exposed to lead and organic solvents in the printing industry. Am J Epidemiol. 137:134–144.

    Google Scholar 

  • Kuhlmann, A.C., McGlothan, J.L., and Guilarte, T.R., 1997, Developmental lead exposure causes spatial learning deficits in adult rats. Neurosci Lett. 233:101–104.

    Article  PubMed  CAS  Google Scholar 

  • Kvist, U., 1980, Importance of spermatozoal zinc as temporary inhibitor of sperm nuclear chromatin decondensation ability in man. Acta Physiol Scand. 109:79–84.

    Article  PubMed  CAS  Google Scholar 

  • Lancranjan, I., Popescu, H.I., Gavanescu, O., Klepsch, I., and Serbanescu, M., 1975, Reproductive ability of workmen occupationally exposed to lead. Arch Environ Health 30:396–401.

    Google Scholar 

  • McDiarmid, M.A. and Weaver, V., 1993, Fouling one’s own nest revisited. Am J Ind Med. 24:1–9.

    Article  PubMed  CAS  Google Scholar 

  • Morrison, J.H., 1993, Differential vulnerability, connectivity, and cell typology. Neurobiol Aging. 14:51–54

    Article  PubMed  CAS  Google Scholar 

  • Murphy, S.K. and Jirtle, R.L., 2000, Imprinted genes as potential genetic and epigenetic toxicologie targets. Environ Health Perspect. 108(Suppl 1):5–11.

    PubMed  CAS  Google Scholar 

  • Nihei, M.K., Desmond, NX., McGlothan, J.L., Kuhlmann, A.C., and Guilarte, T.R., 2000, N-methyl-Daspartate receptor subunit changes are associated with lead-induced deficits of long-term potentiation and spatial learning. Neuroscience. 99:233–242.

    Article  PubMed  CAS  Google Scholar 

  • Oldereid, N.B., Thomassen, Y., Attramadal, A., Olaisen, B., and Purvis, K, 1993, Concentrations of lead, cadmium and zinc in the tissues of reproductive organs of men. J Reprod Fertil. 99:421–425.

    Article  PubMed  CAS  Google Scholar 

  • Olshan, A.F., Teschke, K., and Baird, P.A., 1991, Paternal occupation and congenital anomalies in offspring. Am J Ind Med. 20:447–475.

    Article  PubMed  CAS  Google Scholar 

  • Perreault, S.D., Naish, S.J., and Zirkin, B.R., 1987, The timing of hamster sperm nuclear decondensation and male pronucleus formation is related to sperm nuclear disulfide bond content. Biol Reprod. 36:239–244.

    Article  PubMed  CAS  Google Scholar 

  • Quintanilla-Vega, B., Hoover, D.J., Bal, W., Silbergeld, E.K., Waalkes, M.P., and Anderson, L.D., 2000, Lead interaction with human protamine (HP2) as a mechanism of male reproductive toxicity. Chem Res Toxicol. 13:594–600.

    Article  PubMed  CAS  Google Scholar 

  • Razmiafshari, M, Kao, J., d’Avignon, A., and Zawia, N.H., 2001, NMR identification of heavy metalbinding sites in a synthetic zinc finger peptide: toxicological implications for the interactions of xenobiotic metals with zinc finger proteins. Toxicol Appl Pharmacol. 172:1–10.

    Article  PubMed  CAS  Google Scholar 

  • Silbergeld, E.K., 1992, Neurological perspective on lead toxicity, in: Human Lead Exposure, H. Needleman, ed., CRC Press, Boca Raton, FL, 89–103.

    Google Scholar 

  • Silbergeld, E.K., Akkerman, M., Fowler, B.A., Albuquerque, E.X., and Alkondon, M., 1991, Lead: malemediated effects on reproduction and neurological development. Toxicology. 11:235.

    Google Scholar 

  • Silbergeld, E.K., Landrigan, P.J., Froines, J.R., and Pfeffer, R.M., 1991, The occupational lead standard: a goal unachieved, a process in need of repair, New Solutions Spring:20–30.

    Google Scholar 

  • Silbergeld, E.K., Waalkes, M., and Rice, J.M., 2000, Lead as a carcinogen: experimental evidence and mechanisms of action. Am J Ind Med. 28:316–323.

    Article  Google Scholar 

  • Stowe, V.M. and Goycr, R., 1971, Reproductive ability and progeny of F1 lead-toxic rats. Fertil Steril. 22:755–760.

    PubMed  CAS  Google Scholar 

  • Trasler, J.M. and Doerksen, T, 1999, Teratogen update: paternal exposures—reproducive risks. Teratology. 60:161–172.

    Article  PubMed  CAS  Google Scholar 

  • Tycko, B., Trasler, J., Bestor, T., 1997, Genomic imprinting: gametic mechanisms and somatic consequences. J Androl. 18:480–486.

    PubMed  CAS  Google Scholar 

  • Uzych, L., 1985, Teratogenesis and mutagenesis associated with the exposure of human males to lead: A review. Yale J Biol Med. 58:9–17.

    PubMed  CAS  Google Scholar 

  • Viskum, S., Rabjerg, L., Jorgensen, P.J., and Grandjean, P., 1999, Improvement in semen quality associated with decreasing occupational lead exposure. Am J Ind Med. 35:257–263.

    Article  PubMed  CAS  Google Scholar 

  • Waalkes, M.P., Diwan, B.A., Ward, J.M., Devor, D.E., Goyer, R.A., 1995, Renal tubular tumors and atypical hyperplasias in B6C3F1 mine exposed to lead acetate during gestation and lactation occur with minimal chronic nephropathy. Cancer Res. 55:5265–5271.

    PubMed  CAS  Google Scholar 

  • WHO, IPCS, 1990, Inorganic Lead, World Health Organization: Geneva.

    Google Scholar 

  • Wiekowski, M., Miranda, M., and DePamphilis, M.L., 1991, Regulation of gene expression in preimplantation mouse embryos: Effects of the zygotic clock and the first mitosis on promoter and enhancer activities. Dev Biol. 147:403–414.

    Article  PubMed  CAS  Google Scholar 

  • Wilson, M.A., Johnston, M.V., Goldstein, G.W., and Blue, M.E., 2000, Neonatal lead exposure impairs development of rodent barrel field cortex. Proc Natl Acad Sci USA. 97:5540–5545.

    Article  PubMed  CAS  Google Scholar 

  • Winder, C., 1989, Reproductive and chromosomal effects of occupational exposure to lead in the male. Reprod Toxicol. 3:221–233.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Silbergeld, E.K., Quintanilla-Vega, B., Gandley, R.E. (2003). Mechanisms of Male Mediated Developmental Toxicity Induced by Lead. In: Robaire, B., Hales, B.F. (eds) Advances in Male Mediated Developmental Toxicity. Advances in Experimental Medicine and Biology, vol 518. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-9190-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-9190-4_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4829-0

  • Online ISBN: 978-1-4419-9190-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics