Skip to main content

Signal Processing in Wireless Communications

  • Chapter
  • 525 Accesses

Abstract

Signal to noise ratio, channel outage, error rate, average error burst length are some of the measures that are used to determine quality of service (QoS). The task of a communication engineer is to achieve high signal to noise ratio, low signal outage probability and minimum error rate. However, meeting all these criteria may not be easy in mobile radio environments. The channel shadowing degrades the received signal to noise ratios by tens of decibels [1], thereby could produce long signal drop outs. The channel fading also results in signal dropouts whenever the interference or noise overwhelms the desired signal. The reduction of signal to noise ratio and the signal dropouts distort the received signal to the extent that the detected signal becomes inaudible if it is voice or full of error bursts if the information is digital.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S.H. Lin, “Statistical behavior of a fading signal”, Bell System Technical journal, vol. 50, pp. 3211-3270, 1971.

    Google Scholar 

  2. S.H. Van Wambeck and A.H. Ross, “Performance of diversity receiving systems”, Proc. IRE vol. 39, pp. 256–264, 1951.

    Article  Google Scholar 

  3. R.H. Clarke, “A statistical theory of mobile radio reception”, Bell System Technical Journal, vol. 47,pp. 957–1000, July–August 1968.

    Google Scholar 

  4. G.L. Grisdale, J.B. Morris, and D.S. Palmer, “Fading of long-distance radio signals and a comparison of space and polarization diversity in the 6-18 Mc/s range”, Proc. IEE, vol. 104, pp. 39–51, Jan. 1957

    Google Scholar 

  5. W.C.-Y. Lee and Y.S. Yeh, “Polarization diversity system for mobile radio”, IEEE Trans. on Comm. Tech., vol. COM-20, pp. 912–923, October 1972.

    Article  Google Scholar 

  6. J.H. Vogelman, J.L. Ryerson and M.H. Bickelhaupt, “Tropospheric scatter system using angle diversity”, Proc. IRE, vol. 47, pp. 688–696, May 1959.

    Article  Google Scholar 

  7. M. Schwartz, W.R. Bennet and S. Stein, Communication Systems and Techniques, McGraw Hill, 1966.

    Google Scholar 

  8. H. Staras, “Diversity Reception With Correlated SignalsJ. Applied Physics, vol. 27, pp. 93–94, January 1956.

    Google Scholar 

  9. D.G. Brennan, “Linear Diversity Combining Techniques”, Proc. IRE, vol. 47, pp. 1075–1101, June 1959.

    Article  Google Scholar 

  10. B.B. Barrow, “Diversity combination of fading signals with unequal mean strengths”, IRE trans. on Comm. Syst., vol. CS-11, pp. 73–78, March 1963.

    Article  Google Scholar 

  11. W.C.Y. Lee, Mobile Communication Engineering, McGraw Hill Book Company, 1983.

    Google Scholar 

  12. W.C.Y. Lee, “Mobile radio performance for a two-branch equal-gain combining receiver with correlated signals at the land site”, IEEE Trans. on Veh. Tech., vol. VT-27, pp. 239–243, 1978.

    Article  Google Scholar 

  13. W.E. Shortall, “A switched diversity receiving system for mobile radio”, IEEE Trans. on Comm. Tech., vol. COM-21, pp. 1269–1275, November 1973.

    Article  Google Scholar 

  14. A.J. Rustako, Y.S. Yeh, and R.R. Murray, “Performance of feedback and switched space diversity 900 mhz fm mobile radio systems with rayleigh fading”, IEEE Trans. on Comm. Tech., vol. COM-21, pp. 1257–68, November 1973.

    Article  Google Scholar 

  15. J.D. Parsons, “Experimental switched diversity system for v.h.f. mobile radio”, Proc. IEE, vol. 122, pp. 780–784, August 1975.

    Google Scholar 

  16. B.R. Davis, “FM noise with fading channels and diversity”, IEEE Trans. on Comm. Tech., vol. COM-19, pp. 1189–1200, December 1971.

    Article  Google Scholar 

  17. W.C. Jakes Jr. (Ed.), Microwave Mobile Communications, J. Wiley, 1974.

    Google Scholar 

  18. B.R. Davis, “Random FM in mobile radio with diversity”, IEEE Trans. on Comm. Tech., vol.COM-19, pp. 1259–1267.

    Google Scholar 

  19. C.C. Cutler, R. Kompfener and L.C. Tillotson, “A self steering array repeater”, Bell System Technical Journal, vol.42, pp. 2013–2032, 1963.

    Google Scholar 

  20. C.W. Earp, Radio Diversity Systems, U.S. Patent No. 2,683,213, July 6, 1954.

    Google Scholar 

  21. F. Adachi and J.D. Parsons, “Random FM noise with selection diversity combining”, IEEE Trans. on Communications, vol. 36, no. 6, June 1988, pp. 752–754.

    Article  Google Scholar 

  22. F. Adachi, “Periodic switching diversity effect on co-channel interference performance of a digital fin land mobile radio”, IEEE Trans. on Veh. Tech., vol. VT-27, pp. 220–223, 1978.

    Article  Google Scholar 

  23. L. Lundquist and M.M. Peritsky, “Cochannel interference rejection in a mobile radio space diversity system”, IEEE Trans. on Veh. Tech, vol. VT-20, pp. 68–75, 1971.

    Article  Google Scholar 

  24. L. Schiff, “Statistical suppression of interference with diversity in a mobile radio environment”, IEEE Trans. on Veh. Tech., VT-21, pp. 121–128, November 1972.

    Article  Google Scholar 

  25. W.L. Aranguran and R. E. Langseth, Baseband performance of a pilot diversity system with simulated Rayleigh fading signals and co-channel interference”, IEEE Trans. Veh. Tech., vol. VT-22, pp. 164–172, November 1978.

    Google Scholar 

  26. A. Shah and A. M. Haimovich, “Performance analysis of maximal ratio combining and comparison with optimum combining for mobile radio communications with cochannel interference”, IEEE Trans. on Veh. Tech, vol. VT-49, pp. 1454–1463, July 2000.

    Article  Google Scholar 

  27. F. Adachi, M.T. Feeney and J.D. Parsons, “Effect of correlated fading on level crossing rates and average fade duration with pre-detection diversity reception”, Proc. IEE, vol. 135, Pt. F, no.1, Feb 1988, pp. 11–17.

    Google Scholar 

  28. J.H. Winters, “Switched diversity with feedback for DPSK mobile radio systems”, IEEE Trans. Veh. Tech., vol. VT-32, pp. 134–150, February 1983.

    Article  Google Scholar 

  29. M.A. Blanco and K.J. Zdunek, “Performance and optimization of switched diversity systems for the detection of signals with rayleigh fading”, IEEE Trans. on Comm., vol. COM-27, pp. 1887–1895, Nov. 1979.

    Article  Google Scholar 

  30. J.D. Parsons and A. Pongsupaht, “Error rate reduction in Vah mobile radio data systems using specific diversity reception techniques”, Proc. IEE Pt. F., vol. 127,pp. 475–484, Dec. 1980.

    Google Scholar 

  31. T.T. Tongue and P.H. Witty, “Carrier transmission of binary data in a restricted band”, IEEE Trans. on Comm., vol. COM-18, pp. 295–304, August 1970.

    Google Scholar 

  32. A. Gersho, “Adaptive equalization of highly dispersive channels”, Bell System Technical Journal, vol. 48, pp. 55–70, January 1969.

    MATH  Google Scholar 

  33. M. Schwartz, W. Bennet, and S. Stein, Communication Systems and Techniques, McGraw Hill Book Company, 1966.

    Google Scholar 

  34. J.G. Porkies, Digital Communications, McGraw Hill Book Company, 1995.

    Google Scholar 

  35. H. W. Arnold and W.F. Boatman, “Switched-diversity FSK in frequency selective rayleigh fading”, IEEE Trans. on Veh. Tech., VT-33, pp 156–163, 1984.

    Article  Google Scholar 

  36. J. H. Winters, “Optimum combining in digital mobile radio with cochannel interference”, IEEE Journal on Selected Areas in Communications, vol. SAC-2, no. 4, pp. 528–539, July 1984.

    Article  Google Scholar 

  37. V.M. Bogachev and I. G. Kiselev, “Optimum combing of signals in space diversity reception”, Telecommunication and Radio Engineering, vol. 34/35, pp 83, October 1980.

    Google Scholar 

  38. J. Cui and A. U. H. Sheikh, “Outage probability of cellular radio systems using maximal ratio combining in the presence of multiple interferers”, IEEE Trans. on Communications, vol. 47, no. 8, pp. 1121–1124, August 1999.

    Article  Google Scholar 

  39. J.D. Parsons, P.A. Ratliff, M. Henze and M.J. Withers, “Single receiver diversity systems”, IEEE Trans. on Communications, vol. COM-21, pp. 1276–1280, November 1973.

    Article  Google Scholar 

  40. L. Lewin, “Diversity reception and automatic phase correction”, Proc. IEE, vol. 109B,pp. 295–304, November 1973.

    Google Scholar 

  41. J.D. Parsons, M. Henze, P.A. Ratliff and M.J. Withers, “Diversity techniques for radio reception”, Radio and Electronic Engineer, vol. 45, pp. 357–367, July 1975.

    Article  Google Scholar 

  42. J.D. Parsons and P.A. Ratliff, “Self-phasing aerial array for F.M. communication links”, Electronics Letters, vol. 7, No. 13, pp. 380–381, July 1971.

    Article  Google Scholar 

  43. S. Kazel, “Antenna pattern smoothing by phase modulation”, Proc. IRE, vol. 52, No. 4, pp.435, April 1964.

    Google Scholar 

  44. M.J. Withers, “A diversity technique for reducing fast-fading”, IERE Conference Proceeding, Radio Receivers and Associated Systems, 1972.

    Google Scholar 

  45. O.G. Villard Jr., J.M. Lomasney, and N.M. Kawachika, “A mode-averaging diversity combiner”, IEEE Trans. on Antennas and Propagation, vol. AP-20, No. 4, pp. 463–469, July 1972.

    Article  Google Scholar 

  46. J. Granlund, Topics in the Design of Antennas for Scatter, MIT Lincoln Laboratory Tech. Report No. 135, November 1956.

    Google Scholar 

  47. S.W. Halpern, “The theory of operation of an equal gain pre-detection regenerative diversity combiner with rayleigh fading channels”, IEEE Trans. On Communication Technology, vol. COM-22, Nov.8, pp.1099–1106, 1974.

    Article  Google Scholar 

  48. S-C Lin and V. K. Prabhu, “Diversity combining and equalization of frequency — selective fading signals with unequal mean strengths”, IEEE Veh. Tech. Conference Record, pp. 753–757, 1998.

    Google Scholar 

  49. D. D. Falconer, M. Abdulrahman, N.W.K. Lo, B.R. Petersen, and A. U. H. Sheikh, “Advances in equalization and diversity for portable wireless systems”, Digital Signals Processing, vol. 3, pp. 148–163, 1993.

    Article  Google Scholar 

  50. C.L.B. Despin, D.D. Falconer, and S. A. Mahmoud, “Compound strategies of coding, equalization, and space diversity for wideband TDMA indoor wireless channels”, IEEE Trans. Veh. Tech., vol. 41, no. 4, pp. 369–379, 1992.

    Article  Google Scholar 

  51. S. Tantikovit and Asrar U. H. Sheikh, “Joint multipath diversity combining and MLSE equalization (Rake-MLSE receiver) for WCDMA”, IEEE-VTC’2000-Spring Record, pp. 435-439, Tokyo, Japan, May 2000.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sheikh, A.U.H. (2004). Signal Processing in Wireless Communications. In: Wireless Communications. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-9152-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-9152-2_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4811-5

  • Online ISBN: 978-1-4419-9152-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics