Skip to main content

A New FDTD Solution Method without A Marching-On-In-Time Scheme Using Laguerre Polynomials

  • Conference paper
Ultra-Wideband, Short-Pulse Electromagnetics 6

Abstract

The finite-difference time-domain (FDTD) method has been widely used for the numerical analysis of transient electromagnetic problems because it is conditionally stable and very easy to implement [1]. However, since the FDTD method is an explicit time-marching technique, its time step size should be limited by the well-known CourantFriedich-Lecy (CFL) stability condition. Since the time step is dependent on the smallest length of the cell in a computational domain, this CFL condition may be too restrictive to solve problems with fine structures — thin material, slot, and via.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Taflove and S. C. Hagness, Computational Electrodynamics: the finite-difference time-domain method (Arteeh House, Boston, 2000).

    Google Scholar 

  2. T. Namiki, A new FDTD Algorithm based on Alternating-Direction Implicit Method, IEEE Trans. Microwave Theory Tech., 47, 2003–2007, (1999).

    Article  Google Scholar 

  3. T. Namiki, 3-D ADI-FDTD Method-Unconditionally Stable Time-Domain Algorithm for Solving Full Vector Maxwell’s Equations, IEEE Trans. Microwave Theory Tech., 48, 1743–1748, (2000).

    Article  Google Scholar 

  4. T. Namiki and K. Ito, Numerical Simulation Using ADI-FDTD Method to Estimate Shielding Effectiveness of Thin Conductive Encloses, IEEE Trans. Microwave Theory Tech., 49, 1060–1066, (2001).

    Article  Google Scholar 

  5. Z. Bi, K. Wu, C. Wu, and J. Litva, A Dispersive Boundary Condition for Microstrip Component Analysis Using The FD-TD Method, IEEE Trans. Microwave Theory Tech., 40, 774–777, (1992).

    Article  Google Scholar 

  6. I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products (Academic Press, New York, 1980).

    MATH  Google Scholar 

  7. A. D. Poularikas. The Transforms and Applications Handbook (IEEE Press, 1996).

    Google Scholar 

  8. B. Z. Wang. Enhanced Thin-Slot Formalism for the FDTD Analysis of Thin-Slot Penetration, IEEE Microwave Guided Wave Lett., 5, 142–143,(1995).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this paper

Cite this paper

Chung, Ys., Sarkar, T.K., Jung, B.H. (2003). A New FDTD Solution Method without A Marching-On-In-Time Scheme Using Laguerre Polynomials. In: Ultra-Wideband, Short-Pulse Electromagnetics 6. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-9146-1_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-9146-1_20

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4809-2

  • Online ISBN: 978-1-4419-9146-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics