Advertisement

OPG, RANKL, and RANK in Cancer Metastasis: Expression and Regulation

  • Julie M. Brown
  • Jian Zhang
  • Evan T. Keller
Part of the Cancer Treatment and Research book series (CTAR, volume 118)

Abstract

In normal adult human bone, the skeleton is renewed on a continuous basis in a dynamic, highly regulated process known as the bone remodeling sequence. The synthesis of new bone by osteoblasts is consequent to the critical primary step of excavation of old bone (resorption or osteolysis) by large multinucleated osteoclasts. These processes are tightly coupled such that, in normal bone homeostasis, the formative and resorptive phases are balanced [reviewed in (Mundy, 1999)].

Keywords

Bone Resorption Giant Cell Tumor Skeletal Metastasis Human Bone Marrow Stromal Cell Biophysical Research Communication 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akatsu, T., Murakami, T., Ono, K., Nishikawa, M., Tsuda, E., Mochizuki, K., Fujise, N., Higashio, K., Motoyoshi, K., Yamamoto, M. and Nagata, N. (1998) Osteoclastogenesis inhibitory factor exhibits hypocalcemic effects in normal mice and in hypercalcemic nude mice carrying tumors associated with humoral hypercalcemia of malignancy. Bone 23, 495–498.PubMedGoogle Scholar
  2. Anderson, D.M., Maraskovsky, E., Billingsley, W.L., Dougall, W.C., Tometsko, M.E., Roux, E.R., Teepe, M.C., DuBose, R.F., Cosman, D. and Galibert, L. (1997) A homologue of the TNF receptor and its ligand enhance T-cell growth and dendritic-cell function. Nature 390, 175–179.PubMedGoogle Scholar
  3. Arron, J.R., Vologodskaia, M., Wong, B.R., Naramura, M., Kim, N., Gu, H. and Choi, Y. (2001) A positive regulatory role for Cbl family proteins in tumor necrosis factor-related activation-induced cytokine (TRANCE) and CD40L-mediated Akt activation. Journal of Biological Chemistry 276, 30011–30017.PubMedGoogle Scholar
  4. Atkins, G.J., Haynes, D.R., Graves, S.E., Evdokiou, A., Hay, S., Bouralexis, S. and Findlay, D.M. (2000) Expression of osteoclast differentiation signals by stromal elements of giant cell tumors. Journal of Bone and Mineral Research 15, 640–649.PubMedGoogle Scholar
  5. Atkins, G.J., Bouralexis, S., Graves, S.E., Geary, S.M., Evdokiou, A., Zannettino, A.C., Hay, S. and Findlay, D.M. (2001) Osteoprotegerin inhibits osteoclast formation and bone resorbing activity in giant cell tumors of bone. Bone 28, 370–377.PubMedGoogle Scholar
  6. Bekker, P.J., Holloway, D., Nakanishi, A., Arrighi, M., Leese, P.T. and Dunstan, C.R. (2001) The effect of a single dose of osteoprotegerin in post menopausal women. Journal of Bone and Mineral Research 16, 348–360.PubMedGoogle Scholar
  7. Bhatia, P., Sanders, M. and Hansen, M.F. (2003) Expression of RANK and RANKL is altered in invasive carcinoma and bone metastasis of breast cancer. (Abstract). Oncology (supplement) 17, 18.Google Scholar
  8. Bolon, B., Carter, C, Dans, M., Morony, S., Capparelli, C., Hsieh, A., Mao, M., Kostenuik, P., Dunstan, C.R., Lacey, D.L. and Sheng, J.Z. (2001) Adenoviral delivery of osteoprotegerin ameliorates bone resorption in a mouse ovariectomy model of osteoporosis. Molecular Therapy 3, 197–205.PubMedGoogle Scholar
  9. Brändström, H., Jonsson, K.B., Ohlsson, C., Vidal, O., Ljunghall, S. and Ljunggren, Ö. (1998) Regulation of osteoprotegerin mRNA levels by prostaglandin E2 in human bone marrow stroma cells. Biochemical and Biophysical Research Communications 247, 338–341.PubMedGoogle Scholar
  10. Brändström, H., Björkman, T. and Ljunggren, Ö. (2001) Regulation of osteoprotegerin secretion from primary cultures of human bone marrow stromal cells. Biochemical and Biophysical Research Communications 280, 831–835.PubMedGoogle Scholar
  11. Brown, J.M., Vessella, R.L., Kostenuik, P.J., Dunstan, C.R., Lange, P.H. and Corey, E. (2001a) Serum osteoprotegerin levels are increased in patients with advanced prostate cancer. Clinical Cancer Research 7, 2977–2983.PubMedGoogle Scholar
  12. Brown, J.M., Corey, E., Lee, Z.D., True, L.D., Yun, T.J., Tondravi, M. and Vessella, R.L. (2001b) Osteoprotegerin and RANK ligand expression in prostate cancer. Urology 57, 611–616.PubMedGoogle Scholar
  13. Burgess, T.L., Qian, Y., Kaufman, S., Ring, B.D., Van, G., Capparelli, C, Kelley, M., Hsu, H., Boyle, W.J., Dunstan, C.R., Hu, S. and Lacey, D.L. (1999) The ligand for osteoprotegerin (OPGL) directly activates mature osteoclasts. Journal of Cell Biology 145, 527–538.PubMedGoogle Scholar
  14. Capparelli, C., Kostenuik, P.J., Morony, S., Starnes, C., Weimann, B., Van, G., Scully, S., Qi, M., Lacey, D.L. and Dunstan, C.R. (2000) Osteoprotegerin prevents and reverses hypercalcemia in a murine model of humoral hypercalcemia of malignancy. Cancer Research 60, 783–787.PubMedGoogle Scholar
  15. Chikatsu, N., Takeuchi, Y., Tamura, Y., Fukumoto, S., Yano, K., Tsuda, E., Ogata, E. and Fujita, T. (2000) Interactions between cancer and bone marrow cells induce osteoclast differentiation factor expression and osteoclast-like cell formation in vitro. Biochemical and Biophysical Research Communications 267, 632–637.PubMedGoogle Scholar
  16. Chikazu, D., Katagiri, M., Ogasawara, T., Ogata, N., Shimoaka, T., Takato, T., Nakamura, K. and Kawaguchi, H. (2001) Regulation of osteoclast differentiation by fibroblast growth factor 2: stimulation of receptor activator of nuclear factor KB ligand/osteoclast differentiation factor expression in osteoblasts and inhibition of macrophage colonystimulating factor function in osteoclast precursors. Journal of Bone and Mineral Research 16,2074–2081.PubMedGoogle Scholar
  17. Coleman, R.E. (1997) Skeletal complications of malignancy. Cancer (Supplement) 80, 1588–1594.PubMedGoogle Scholar
  18. Croucher, P.I., Shipman, CM., Lippitt, J., Perry, M., Asosingh, K., Hijzen, A., Brabbs, A.C., van Beek, E.J., Holen, I., Skerry, T.M., Dunstan, C.R., Russell, G.R., Van Camp, B. and Vanderkerken, K. (2001) Osteoprotegerin inhibits the development of osteolytic bone disease in multiple myeloma. Blood 98, 3534–3540.PubMedGoogle Scholar
  19. Dougall, W.C., Glaccum, M., Charrier, K., Rohrbach, K., Brasel, K., De Smedt, T., Daro, E., Smith, J., Tometsko, M.E., Maliszewski, C.R., Armstrong, A., Shen, V., Bain, S., Cosman, D. Anderson, D., Morrisey, P.J., Peschon, J.J. and Schuh, J. (1999) RANK is essential for osteoclast and lymph node development. Genes and Development 13, 2412–2424.PubMedGoogle Scholar
  20. Emery, J.G., McDonnell, P., Burke, M.B., Deen, K.C., Lyn, S., Silverman, C, Dul, E., Appelbaum, E.R., Eichman, C., DiPrinzio, R., Dodds, R.A., James, I.E., Rosenberg, M., Lee, J.C. and Young, P.R. (1998) Osteoprotegerin is a receptor for the cytotoxic ligand TRAIL. Journal of Biological Chemistry 273, 14363–14367.PubMedGoogle Scholar
  21. Festuccia, C., Bologna, M., Gravana, G.L., Guerra, F., Angelucci, A., Villanova, I., Millimaggi, D. and Teti, A. (1999) Osteoblast conditioned media contain TGF-ßl and modulate the migration of prostate tumor cells and their interactions with extracellular matrix components. International Journal of Cancer 81, 395–403.Google Scholar
  22. Fiumara, P., Snell, V., Li, Y., Mukhopadhyay, A., Younes, M., Gillenwater, A.M., Cabanillas, F., Aggarwal, B.B. and Younes, A. (2001) Functional expression of receptor activator of nuclear factor KB in Hodgkin disease cell lines. Blood 98, 2784–2790.PubMedGoogle Scholar
  23. Fu, Z., Dozmorov, I.M. and Keller, E.T. (2002) Osteoblasts produce soluble factors that induce a gene expression pattern in non-metastatic prostate cancer cells, similar to that found in bone metastatic prostate cancer cells. The Prostate 51, 10–20.PubMedGoogle Scholar
  24. Fuller, K., Wong, B., Fox, S., Choi, Y. and Chambers, T.J. (1998) TRANCE is necessary and sufficient for osteoblast-mediated activation of bone resorption in osteoclasts. Journal of Experimental Medicine 188, 997–1001.PubMedGoogle Scholar
  25. Gao, Y.H., Shinki, T., Yuasa, T., Kataoka-Enomoto, H., Komori, T., Suda, T. and Yamaguchi, A. (1998) Potential role of cbfal, an essential transcriptional factor for osteoblast differentiation, in osteoclastogenesis: regulation of mRNA expression of osteoclast differentiation factor (ODF). Biochemical and Biophysical Research Communications 252, 697–702.PubMedGoogle Scholar
  26. Giuliani, N., Bataille, R., Mancini, C., Lazzaretti, M. and Barille, S. (2001) Myeloma cells induce imbalance in the osteoprotegerin/osteoprotegerin ligand system in the human bone marrow environment. Blood 98, 3527–3533.PubMedGoogle Scholar
  27. Goltzman, D. (2001) Mechanisms of the development of osteoblastic metastases. Cancer 80, 1581–1587.Google Scholar
  28. Halladay, D.L., Miles, R.R., Thirunavukkarasu, K., Chandrasekhar, S., Martin, T.J. and Onyia, J.E. (2002) Identification of signal transducing pathways and promoter sequences that mediate parathyroid hormone 1-38 inhibition of osteoprotegerin gene expression. Journal of Cellular Biochemistry 84, 1–11.Google Scholar
  29. Hofbauer, L.C., Dunstan, C.R., Spelsberg, T.C., Riggs, B.L. and Khosla, S. (1998) Osteoprotegerin production by human osteoblast lineage cells is stimulated by vitamin D, bone morphogenetic protein-2, and cytokines. Biochemical and Biophysical Research Communications 250, 776–781.PubMedGoogle Scholar
  30. Hofbauer, L.C., Khosla, S., Dunstan, C.R., Lacey, D.L., Spelsberg, T.C. and Riggs, B.L. (1999a) Estrogen stimulates gene expression and protein production of osteoprotegerin in human osteoblastic cells. Endocrinology 140, 4367–4370.PubMedGoogle Scholar
  31. Hofbauer, L.C., Lacey, D.L., Dunstan, C.R., Spelsberg, T.C, Riggs, B.L. and Khosla, S. (1999b) Interleukin-lß and tumor necrosis factor-α, but not interleukin-6, stimulate osteoprotegerin ligand gene expression in human osteoblastic cells. Bone 25, 255–259.PubMedGoogle Scholar
  32. Hofbauer, L.C. and Heufelder, A.E. (2001) Role of receptor activator of nuclear factor-kB ligand and osteoprotegerin in bone cell biology. Journal of Molecular Medicine 79, 243–253.PubMedGoogle Scholar
  33. Holen, I., Croucher, P.I., Hamdy, F.C. and Eaton, C.L. (2002) Osteoprotegerin (OPG) is a survival factor for human prostate cancer cells. Cancer Research 62, 1619–1623.PubMedGoogle Scholar
  34. Honore, P., Luger, N.M., Sabino, M.A., Schwei, M.J., Rogers, S.D., Mach, D.B., O’Keefe, P.F., Ramnaraine, M.L., Clohisy, D.R. and Mantyh, P.W. (2000) Osteoprotegerin blocks bone cancer-induced skeletal destruction, skeletal pain and pain-related neurochemical reorganization of the spinal cord. Nature Medicine 6, 521–528.PubMedGoogle Scholar
  35. Horowitz, M.C., Xi, Y., Wilson, K. and Kacena, M.A. (2001) Control of osteoclastogenesis and bone resorption by members of the TNF family of receptors and ligands. Cytokine and Growth Factor Reviews 12, 9–18.PubMedGoogle Scholar
  36. Horwood, N.J., Elliott, J., Martin, T.J. and Gillespie, M.T. (1998) Osteotropic agents regulate the expression of osteoclast differentiation factor and osteoprotegerin in osteoblastic stromal cells. Endocrinology 139, 4743–4746.PubMedGoogle Scholar
  37. Hsu, H., Lacey, D.L., Dunstan, C.R., Solovyev, I., Colombero, A., Timms, E., Tan, H.-L., Elliot, G., Kelley, M.J., Sarosi, I., Wang, L., Xia, X.-Z., Elliot, R., Chiu, L., Black, T., Scully, S., Caparelli, C., Morony, S., Shimamoto, G., Bass, M.B. and Boyle, W.J. (1999) Tumor necrosis factor receptor family member RANK mediates osteoclast differentiation and activation induced by osteoprotegerin ligand. Proceedings of the National Academy of Sciences of the United States of America 96, 3540–3545.PubMedGoogle Scholar
  38. Huang, L., Xu, J.K., Wood, D.J. and Zheng, M.H. (2000) Gene expression of osteoprotegerin ligand, osteoprotegerin, and receptor activator of NF-KB in giant cell tumor of bone. Possible involvement in tumor cell-induced osteoclast-like cell formation. American Journal of Pathology 156, 761–767.PubMedGoogle Scholar
  39. Huang, L., Cheng, Y.Y., Chow, L.T.C., Zheng, M.H. and Kumta, S.M. (2002) Tumour cells produce receptor activator of NF-KB ligand (RANKL) in skeletal metastases. Journal of Clinical Pathology 55,877–878.PubMedGoogle Scholar
  40. Ikeda, T., Kasai, M., Utsuyama, M. and Hirokawa, K. (2001) Determination of three isoforms of the receptor activator of nuclear factor-kB ligand and their differential expression in bone and thymus. Endocrinology 142, 1419–1426.PubMedGoogle Scholar
  41. Jung, K., Lein, M., von Hosslin, K., Brux, B., Schnorr, D., Loening, S.A. and Sinha, P. (2001) Osteoprotegerin in serum as a novel marker of bone metastatic spread in prostate cancer. Clinical Chemistry 47, 2061–2063.PubMedGoogle Scholar
  42. Kaneda, T., Nojima, T., Nakagawa, M., Ogasawara, A., Kaneko, H., Sato, T., Mano, H., Kumegawa, M. and Hakeda, Y. (2000) Endogenous production of TGF-ß is essential for osteoclastogenesis induced by a combination of receptor activator of NF-KB ligand and macrophage-colony-stimulating factor. Journal of Immunology 165, 4254–4263.Google Scholar
  43. Kitazawa, S. and Kitazawa, R. (2002) RANK ligand is a prerequisite for cancer-associated osteolytic lesions. Journal of Pathology 198, 228–236.PubMedGoogle Scholar
  44. Komori, T., Yagi, H., Nomura, S., Yamaguchi, A., Sasaki, K., Deguchi, K., Shimizu, Y., Branson, R.T., Gao, Y.-H., Inada, M., Sato, M., Okamoto, R., Kitamura, Y., Yoshiki, S. and Kishimoto, T. (1997) Targeted disruption of Cbfal results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell 89, 755–764.PubMedGoogle Scholar
  45. Kong, Y.Y., Yoshida, H., Sarosi, I., Tan, H.L., Timms, E., Capparelli, C., Morony, S., Oliveira-dos-Santos, A.J., Van, G., Itie, A., Khoo, W., Wakeham, A., Dunstan, C.R., Lacey, D.L., Mak, T.W., Boyle, W.J. and Penninger, J.M. (1999) OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis. Nature 397,315–323.PubMedGoogle Scholar
  46. Lacey, D.L., Timms, E., Tan, H.-L., Kelley, M.J., Dunstan, C.R., Burgess, T., Elliott, R., Colombero, A., Elliott, G., Scully, S., Hsu, H., Sullivan, J., Hawkins, N., Davy, E., Capparelli, C., Eli, A., Qian, Y.X., Kaufman, S., Sarosi, I., Shalhoub, V., Senaldi, G., Guo, J., Delaney, J. and Boyle, W.J. (1998) Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell 93, 165–176.PubMedGoogle Scholar
  47. Lacey, D.L., Tan, H.L., Lu, J., Kaufman, S., Van, G., Qiu, W., Rattan, A., Scully, S., Fletcher, F., Juan, T., Kelley, M., Burgess, T.L., Boyle, W.J. and Polverino, A.J. (2000) Osteoprotegerin ligand modulates murine osteoclast survival in vitro and in vivo. American Journal of Pathology 157, 435–448.PubMedGoogle Scholar
  48. Lee, S.K. and Lorenzo, J.A. (1999) Parathyroid hormone stimulates TRANCE and inhibits osteoprotegerin messenger ribonucleic acid expression in murine bone marrow cultures: correlation with osteoclast-like cell formation. Endocrinology 140, 3552–3561.PubMedGoogle Scholar
  49. Lee, Y., Schwartz, E., Davies, M., Jo, M., Gates, J., Wu, J., Zhang, X. and Lieberman, J.R. (2003) Differences in the cytokine profiles associated with prostate cancer cell induced osteoblastic and osteolytic lesions in bone. Journal of Orthopaedic Research 21, 62–72.PubMedGoogle Scholar
  50. Lee, Z.H., Kwack, K., Kim, K.K., Lee, S.H. and Kim, H.H. (2000) Activation of c-Jun Nterminal kinase and activator protein 1 by receptor activator of nuclear factor KB. Molecular Pharmacology 58, 1536–1545.PubMedGoogle Scholar
  51. Lee, Z.H. and Kim, H.-H. (2003) Signal transduction by receptor activator of nuclear factor kappa B in osteoclasts. Biochemical and Biophysical Research Communications 305, 211–214.PubMedGoogle Scholar
  52. Li, J., Sarosi, I., Yan, X.Q., Morony, S., Capparelli, C, Tan, H.L., McCabe, S., Elliott, R., Scully, S., Van, G., Kaufman, S., Juan, S.C., Sun, Y., Tarpley, J., Martin, L., Christensen, K., McCabe, J., Kostenuik, P., Hsu, H., Fletcher, F., Dunstan, C.R., Lacey, D.L. and Boyle, W.J. (2000) RANK is the intrinsic hematopoietic cell surface receptor that controls osteoclastogenesis and regulation of bone mass and calcium metabolism. Proceedings of the National Academy of Sciences of the United States of America 97, 1566–1571.PubMedGoogle Scholar
  53. Lin, D.L., Tamowski, C.P., Zhang, J., Dai, J., Rohn, E., Patel, A.H., Morris, M.D. and Keller, E.T. (2001) Bone metastatic LNCaP-derivative C4-2B prostate cancer cell line mineralizes in vitro. Prostate 47, 212–221.PubMedGoogle Scholar
  54. Lipton, A., Ali, S.M., Leitzel, K., Chinchilli, V., Witters, L., Engle, L., Holloway, D., Bekker, P. and Dunstan, C.R. (2002) Serum osteoprotegerin levels in healthy controls and cancer patients. Clinical Cancer Research 8, 2306–2310.PubMedGoogle Scholar
  55. Ljunghall, S., Jonsson, K.B., Vidal, O., Ljunghall, S., Ohlsson, C. and Ljunggren, Ö. (1998) Tumor necrosis factor-α and-ß upregulate the levels of osteoprotegerin mRNA in human osteosarcoma MG-63 cells. Biochemical and Biophysical Research Communications 248, 454–457.PubMedGoogle Scholar
  56. Luger, N.M., Honore, P., Sabino, M.A., Schwei, M.J., Rogers, S.D., Mach, D.B., Clohisy, D.R. and Mantyh, P.W. (2001) Osteoprotegerin diminishes advanced bone cancer pain. Cancer Research 61, 4038–4047.PubMedGoogle Scholar
  57. Lum, L., Wong, B.R., Josien, R., Becherer, J.D., Erdjument-Bromage, H., Schlöndorff, J., Tempst, P., Choi, Y. and Blobel, C.P. (1999) Evidence for a role of a tumor necrosis factor-α (TNF-α)-converting enzyme-like protease in shedding of TRANCE, a TNF family member involved in osteoclastogenesis and dendritic cell survival. Journal of Biological Chemistry 274, 13613–13618.PubMedGoogle Scholar
  58. Makiishi-Shimobayashi, C., Tsujimura, T., Iwasaki, T., Yamada, N., Sugihara, A., Okamura, H., Hayashi, S. and Terada, N. (2001) Interleukin-18 up-regulates osteoprotegerin expression in stromal/osteoblastic cells. Biochemical and Biophysical Research Communications 281, 361–366.PubMedGoogle Scholar
  59. Matsuzaki, K., Udagawa, N., Takahashi, N., Yamaguchi, K., Yasuda, H., Shima, N., Morinaga, T., Toyama, Y., Yabe, Y., Higashio, K. and Suda, T. (1998) Osteoclast differentiation factor (ODF) induces osteoclast-like cell formation in human peripheral blood mononuclear cell cultures. Biochemical and Biophysical Research Communications 246, 199–204.PubMedGoogle Scholar
  60. Michigami, T., Ihara-Watanabe, M. and Ozono, K. (2001) Receptor activator of nuclear factor KB ligand (RANKL) is a key molecule of osteoclast formation for bone metastasis in a newly developed model of human neuroblastoma. Cancer Research 61, 1637–1644.PubMedGoogle Scholar
  61. Mizukami, J., Takaesu, G., Akatsuka, H., Sakurai, H., Ninomiya-Tsuji, J., Matsumoto, K., Sakurai, N. (2002) Receptor activator of NF-KB ligand (RANKL) activates TAK1 mitogen-activated protein kinase kinase kinase through a signaling complex containing RANK, TB2, and TRAF6. Molecular and Cellular Biology 22, 992–1000.PubMedGoogle Scholar
  62. Mizuno, A., Amizuka, N., Irie, K., Murakami, A., Fujise, N., Kanno, T., Sato, Y., Nakagawa, N., Yasuda, H., Mochizuki, S., Gomibuchi, T., Yano, K., Shima, N., Washida, N., Tsuda, E., Morinaga, T., Higashio, K. and Ozawa, H. (1998) Severe osteoporosis in mice lacking osteoclastogenesis inhibitory factor/osteoprotegerin. Biochemical and Biophysical Research Communications 247, 610–615.PubMedGoogle Scholar
  63. Morinaga, T., Nakagawa, N., Yasuda, H., Tsuda, E. and Higashio, K. (1998) Cloning and characterization of the gene encoding human osteoprotegerin/osteoclastogenesis-inhibitory factor. European Journal of Biochemistry 254, 685–691.PubMedGoogle Scholar
  64. Morony, S., Capparelli, C., Lee, R., Shimamoto, G., Boone, T., Lacey, D.L. and Dunstan, C.R. (1999) A chimeric form of osteoprotegerin inhibits hypercalcemia and bone resorption induced by IL-lß, TNF-α, PTH, PTHrP, and 1,25(OH)2D3. Journal of Bone and Mineral Research 14, 1478–1485.PubMedGoogle Scholar
  65. Morony, S., Capparelli, C., Sarosi, I., Lacey, D.L., Dunstan, C.R. and Kostenuik, P.J. (2001) Osteoprotegerin inhibits osteolysis and decreases skeletal tumor burden in syngeneic and nude mouse models of experimental bone metastasis. Cancer Research 61, 4432–4436.PubMedGoogle Scholar
  66. Mundy, G.R. (1999) Bone remodeling. Primer on the metabolic bone diseases and disorders of mineral metabolism, (ed. by M. J. Favus), pp. 30–38. Lippincott Williams and Wilkins, Philadelphia.Google Scholar
  67. Murakami, T., Yamamoto, M., Ono, K., Nishikawa, M., Nagata, N., Motoyoshi, K. and Akatsu, T. (1998) Transforming growth factor-ß l increases mRNA levels of osteoclastogenesis inhibitory factor in osteoblastic/stromal cells and inhibits the survival of murine osteoclast-like cells. Biochemical and Biophysical Research Communications 252, 747–752.PubMedGoogle Scholar
  68. Nagai, M. and Sato, N. (1999) Reciprocal gene expression of osteoclastogenesis inhibitory factor and osteoclast differentiation factor regulates osteoclast formation. Biochemical and Biophysical Research Communications 257, 719–723.PubMedGoogle Scholar
  69. Nakagawa, N., Kinosaki, M., Yamaguchi, K., Shima, N., Yasuda, H., Yano, K., Morinaga, T. and Higashio, K. (1998) RANK is the essential signaling receptor for osteoclast differentiation factor in osteoclastogenesis. Biochemical and Biophysical Research Communications 253, 395–400.PubMedGoogle Scholar
  70. Nakagawa, N., Yasuda, H., Yano, K., Mochizuki, S., Kobayashi, N., Fujimoto, H., Shima, N., Morinaga, T., Chikazu, D., Kawaguchi, H. and Higashio, K. (1999a) Basic fibroblast growth factor induces osteoclast formation by reciprocally regulating the production of osteoclast differentiation factor and osteoclastogenesis inhibitory factor in mouse osteoblastic cells. Biochemical and Biophysical Research Communications 265, 158–163.PubMedGoogle Scholar
  71. Nakagawa, N., Yasuda, H., Yano, K., Mochizuki, S., Kobayashi, N., Fujimoto, H., Yamaguchi, K., Shima, N., Morinaga, T. and Higashio, K. (1999b) Basic fibroblast growth factor inhibits osteoclast formation induced by 1α,25-dihydroxyvitamin D3 through suppressing the production of osteoclast differentiation factor. Biochemical and Biophysical Research Communications 265, 45–50.PubMedGoogle Scholar
  72. Nakashima, T., Kobayashi, Y., Yamasaki, S., Kawakami, A., Eguchi, K., Sasaki, H. and Sakai, H. (2000) Protein expression and functional difference of membrane-bound and soluble receptor activator of NF-KB ligand: modulation of the expression by osteotropici factors and cytokines. Biochemical and Biophysical Research Communications 275, 768–775.PubMedGoogle Scholar
  73. Nielsen, O.S., Munro, A.J. and Tannock, I.F. (1991) Bone metastases: pathophysiology andl management policy. Journal of Clinical Oncology 9, 509–524.PubMedGoogle Scholar
  74. Nosaka, K., Miyamoto, T., Sakai, T., Mitsuya, H.,Suda, T. and Matsuoka, M. (2002) Mechanism of hypercalcemia in adult T-cell leukemia: overexpression of receptor activator of nuclear factor KB ligand on adult T-cell leukemia cells. Blood 99, 634–640.PubMedGoogle Scholar
  75. O’Brien, E.A., Williams, J.H.H. and Marshall, M.J. (2000) Osteoprotegerin ligand regulatesv osteoclast adherence to the bone surface in mouse calvaria. Biochemical and Biophysical Research Communications 274, 281–290.PubMedGoogle Scholar
  76. O’Brien, E.A., Williams, J.H. and Marshall, M.J. (2001) Osteoprotegerin is produced whene prostaglandin synthesis is inhibited causing osteoclasts to detach from the surface of mouse parietal bone and attach to the endocranial membrane. Bone 28, 208–214.PubMedGoogle Scholar
  77. Onyia, J.E., Miles, R.R., Yang, X., Halladay, D.L., Hale, J., Glasebrook, A., McClure, D., j Seno, G., Churgay, L., Chandrasekhar, S. and Martin, T.J. (2000) In vivo demonstration that human parathyroid hormone 1-38 inhibits the expression of osteoprotegerin in bone with the kinetics of an immediate early gene. Journal of Bone and Mineral Research 15, 863–871.PubMedGoogle Scholar
  78. Oyajobi, B.O. anderson, D.M., Traianedes, K., Williams, P.J., Yoneda, T. and Mundy, G.R.i (2001) Therapeutic efficacy of a soluble receptor activator of nuclear factor KB-IgG Fc fusion protein in suppressing bone resorption and hypercalcemia in a model of humoral hypercalcemia of malignancy. Cancer Research 61, 2572–2578.PubMedGoogle Scholar
  79. Pearse, R.N., Yaccoby, S., Wong, B.R., Liau, D.F., Colman, N., Michaeli, J., Epstein, J. and Choi, Y. (2001) Multiple myeloma disrupts the TRANCE/ osteoprotegerin cytokine axis to trigger bone destruction and promote tumor progression. Proceedings of the National Academy of Sciences of the United States of America 98, 11581–11586.PubMedGoogle Scholar
  80. Penno, H., Silfverswärd, C.-J., Frost, A., Brändström, H., Nilsson, O. and Ljunggren, Ö1 (2002) Osteoprotegerin secretion from prostate cancer is stimulated by cytokines, in vitro. Biochemical and Biophysical Research Communications 293, 451–455.PubMedGoogle Scholar
  81. Quinn, J.M.W., Itoh, K., Udagawa, N., Häusler, K., Yasuda, H., Shima, N., Mizuno, A., Higashio, K., Takahashi, N., Suda, T., Martin, T.J. and Gillespie, M.T. (2001) Transforming growth factor ß affects osteoclast differentiation via direct and indirect actions. Journal of Bone and Mineral Research 16, 1787–1794.PubMedGoogle Scholar
  82. Revilla, M., Arribas, I., Sanchez-Chapado, M., Villa, L.F., Bethencourt, F. and Rico, H. (1998) Total and regional bone mass and biochemical markers of bone remodeling in metastatic prostate cancer. The Prostate 35, 243–247.PubMedGoogle Scholar
  83. Rodan, G.A. and Martin, T.J. (1981) Role of osteoblast in hormonal control of bone resorption-a hypothesis. Calcified Tissue International 33, 349–351.PubMedGoogle Scholar
  84. Roland, S. (1958) Calcium studies in ten cases of osteoblastic prostatic metastasis. Journal of Urology 79, 339–342.PubMedGoogle Scholar
  85. Roodman, G.D. (1996) Advances in bone biology: the osteoclast. Endocrine Reviews 17, 308–332.PubMedGoogle Scholar
  86. Roodman, G.D. (1999) Cell biology of the osteoclast. Experimental Hematology 27, 1229–1241.PubMedGoogle Scholar
  87. Roux, S., Meignin, V., Quillard, J., Meduri, G., Guiochon-Mantel, A., Fermand, J.-P., Milgrom, E. and Mariette, X. (2002a) RANK (receptor activator of nuclear factor-kB) and RANKL expression in multiple myeloma. British Journal of Haematology 117, 86–92.PubMedGoogle Scholar
  88. Roux, S., Amazit, L., Meduri, G., Guiochon-Mantel, A., Milgrom, E. and Mariette, X. (2002b) RANK (receptor activator of nuclear factor KB) and RANK ligand are expressed in giant cell tumors of bone. American Journal of Clinical Pathology 117, 210–216.PubMedGoogle Scholar
  89. Seidel, C., Hjertner, Ø, Abildgaard, N., Heickendorff, L., Hjorth, M., Westin, J., Nielsen, J.L., Hjorth-Hansen, H., Waage, A., Sundan, A. and Børset, M., The Nordic Myeloma Study Group (2001) Serum osteoprotegerin levels are reduced in patients with multiple myeloma with lytic bone disease. Blood 98, 2269–2271.PubMedGoogle Scholar
  90. Sezer, O., Heider, U., Jakob, C., Eucker, J. and Possinger, K. (2002a) Human bone marrow myeloma cells express RANKL. Journal of Clinical Oncology 20, 353–354.PubMedGoogle Scholar
  91. Sezer, O., Heider, U., Jakob, C., Zavrski, I., Eucker, J., Possinger, K., Sers, C. and Krenn, V. (2002b) Immunocytochemistry reveals RANKL expression of myeloma cells. Blood 99, 4646–4647.PubMedGoogle Scholar
  92. Simonet, W.S., Lacey, D.L., Dunstan, C.R., Kelley, M., Chang, M.-S., Lüthy, R., Nguyen, H.Q., Wooden, S., Bennett, L., Boone, T., Shimamoto, G., DeRose, M., Elliott, R., Colombero, A., Tan, H.-L., Trail, G., Sullivan, J., Davy, E., Bucay, N., Renshaw-Gegg, L., Hughes, T.M., Hill, D., Pattison, W., Campbell, P., Sander, S., Van, G., Tarpley, J., Derby, P., Lee, R., Amgen EST Program and Boyle, W.J. (1997) Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell 89, 309–319.PubMedGoogle Scholar
  93. Takahashi, N., Akatsu, T., Udagawa, N., Sasaki, T., Yamaguchi, A., Moseley, J.M., Martin, T.J. and Suda, T. (1988) Osteoblastic cells are involved in osteoclast formation. Endocrinology 123, 2600–2602.PubMedGoogle Scholar
  94. Takamoto, M., Tsuji, K., Yamashita, T., Sasaki, H., Yano, T., Taketani, Y., Komori, T., Nifuji, A. and Noda, M. (2003) Hedgehog signaling enhances core-binding factor al and receptor activator of nuclear factor-KB ligand (RANKL) gene expression in chondrocytes. Journal of Endocrinology 117, 413–421.Google Scholar
  95. Thirunavukkarasu, K., Halladay, D.L., Miles, R.R., Yang, X., Galvin, R.J.S., Chandrasekhar, S., Martin, T.J. and Onyia,J.E. (2000) The osteoblast-specific transcription factor Cbfal contributes to the expression of osteoprotegerin, a potent inhibitor of osteoclast differentiation and function. Journal of Biological Chemistry 275, 25163–25172.PubMedGoogle Scholar
  96. Thirunavukkarasu, K., Miles, R.R., Halladay, D.L., Yang, X., Galvin, R.J.S., Chandrasekhar, S., Martin, T.J. and Onyia, J.E. (2001) Stimulation of osteoprotegerin (OPG) gene expression by transforming growth factor-ß (TGF-ß ). Mapping of the OPG promoter region that mediates TGF-ß effects. Journal of Biological Chemistry 276, 36241–36250.PubMedGoogle Scholar
  97. Thomas, G.P., Baker, S.U.K., Eisman, J.A. and Gardiner, E.M. (2001) Changing RANKL/OPG mRNA expression in differentiating murine primary osteoblasts. Journal of Endocrinology, 170, 451–460.PubMedGoogle Scholar
  98. Thomas, R.J., Guise, T.A., Yin, J.J., Elliott, J., Horwood, N.J., Martin, T.J. and Gillespie, M.T. (1999) Breast cancer cells interact with osteoblasts to support osteoclast formation. Endocrinology, 140, 4451–4458.PubMedGoogle Scholar
  99. Tricot, G. (2000) New insights into role of microenvironment in multiple myeloma. Lancet, 355, 248–250.PubMedGoogle Scholar
  100. Tsuda, E., Goto, M., Mochizuki, S., Yano, K., Kobayashi, F., Morinaga, T. and Higashio, K. (1997) Isolation of a novel cytokine from human fibroblasts that specifically inhibits osteoclastogenesis. Biochemical and Biophysical Research Communications 234, 137–142.PubMedGoogle Scholar
  101. Udagawa, N., Takahashi, N., Jimi, E., Matsuzaki, K., Tsurukai, T., Itoh, K., Nakagawa, N., Yasuda, H., Goto, M., Tsuda, E., Higashio, K., Gillespie, M.T., Martin, T.J. and Suda, T. (1999) Osteoblasts/stromal cells stimulate osteoclast activation through expression of osteoclast differentiation factor/RANKL but not macrophage colony-stimulating factor. Bone 25, 517–523.PubMedGoogle Scholar
  102. Vidal, N.O.A., Brändström, H., Jonsson, K.B. and Ohlsson, C. (1998a) Osteoprotegerin mRNA is expressed in primary human osteoblast-like cells: down-regulation by glucocorticoids. Journal of Endocrinology 159, 191–195.PubMedGoogle Scholar
  103. Vidal, O.N.A., Sjögren, K., Eriksson, B.I., Ljunggren, Ö. and Ohlsson, C. (1998b) Osteoprotegerin mRNA is increased by interleukin-lα in the human osteosarcoma cell line MG-63 and in human osteoblast-like cells. Biochemical and Biophysical Research Communications 248, 696–700.PubMedGoogle Scholar
  104. Viereck, V., Emons, G., Lauck, V., Frosch, K.-H., Blaschke, S. and Hofbauer, L.C. (2002) Bisphosphonates pamidronate and zoledronic acid stimulate osteoprotegerin production by primary human osteoblasts. Biochemical and Biophysical Research Communications 291, 680–686.PubMedGoogle Scholar
  105. Wan, M., Shi, X., Feng, X. and Cao, X. (2001) Transcriptional mechanisms of bone morphogenetic protein-induced osteoprotegrin gene expression. Journal of Biological Chemistry 276, 10119–10125.PubMedGoogle Scholar
  106. Weitzmann, M.N., Cenci, S., Brown, C. and Pacifici, R. (2000) Interleukin-7 stimulates osteoclast formation by up-regulating the T-cell production of soluble osteoclastogenic cytokines. Blood 96, 1873–1878.PubMedGoogle Scholar
  107. Wong, B.R., Josien, R., Lee, S.Y., Sauter, B., Li, H.L., Steinman, R.M. and Choi, Y. (1997) TRANCE (tumor necrosis factor [TNF]-related activation-induced cytokine), a new TNF family member predominantly expressed in T cells, is a dendritic cell-specific survival factor. Journal of Experimental Medicine 186, 2075–2080.PubMedGoogle Scholar
  108. Wong, B.R., Josien, R., Lee, S.Y., Vologodskaia, M., Steinman, R.M. and Choi, Y. (1998) The TRAF family of signal transducers mediates NF-KB activation by the TRANCE receptor. Journal of Biological Chemistry 273, 28355–28359.PubMedGoogle Scholar
  109. Wong, B.R., Josien, R. and Choi, Y. (1999a) TRANCE is a TNF family member that regulates dendritic cell and osteoclast function. Journal of Leukocyte Biology 65, 715–724.PubMedGoogle Scholar
  110. Wong, B.R., Besser, D., Kim, N., Arron, J.R., Vologodskaia, M., Hanafusa, H. and Choi, Y. (1999b) TRANCE, a TNF family member, activates Akt/PKB through a signaling complex involving TRAF6 and c-Src. Molecular Cell 4, 1041–1049.PubMedGoogle Scholar
  111. Yamamoto, M., Murakami, T., Nishikawa, M., Tsuda, E., Mochizuki, K., Higashio, K., Akatsu, T., Motoyoshi, K. and Nagata, N. (1998) Hypocalcemic effect of osteoclastogenesis inhibitory factor/osteoprotegerin in the thyroparathyroidectomized rat. Endocrinology 139, 4012–4015.PubMedGoogle Scholar
  112. Yan, T., Riggs, B.L., Boyle, W.J. and Khosla, S. (2001) Regulation of osteoclastogenesis and RANK expression by TGF-ß1. Journal of Cellular Biochemistry 83, 320–325.PubMedGoogle Scholar
  113. Yang, J., Fizazi, K., Peleg, S., Sikes, C.R., Raymond, A.K. Jamal, N., Hu, M., Olive, M., Martinez, L.A., Wood, C.G., Logothetis, C.J., Karsenty, G. and Navone, N.M. (2001) Prostate cancer cells induce osteoblast differentiation through a Cbfa 1-dependent pathway. Cancer Research 61, 5652–5659.PubMedGoogle Scholar
  114. Yang, X., Halladay, D., Onyia, J.E., Martin, T.J. and Chandrasekhar, S. (2002) Protein kinase C is a mediator of the synthesis and secretion of osteoprotegerin in osteoblast-like cells. Biochemical and Biophysical Research Communications 290, 42–46.PubMedGoogle Scholar
  115. Yasuda, H., Shima, N., Nakagawa, N., Mochizuki, S., Yano, K., Fujise, N., Sato, Y., Goto, M., Yamaguchi, K., Kuriyama, M., Kanno, T., Murakami, A., Tsuda, E., Morinaga, T. and Higashio, K. (1998a) Identity of osteoclastogenesis inhibitory factor (OCIF) and osteoprotegerin (OPG): a mechanism by which OCIF/OPG inhibits osteoclastogenesis in vitro. Endocrinology 139, 1329–1337.PubMedGoogle Scholar
  116. Yasuda, H., Shima, N., Nakagawa, N., Yamaguchi, K., Kinosaki, M., Mochizuki, S.-I., Tomoyasu, A., Yano, K., Goto, M., Murakami, A., Tsuda, E., Morinaga, T., Higashio, K., Udagawa, N., Takahashi, H. and Suda, T. (1998b) Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proceedings of the National Academy of Sciences of the United States of America 95, 3597–3602.PubMedGoogle Scholar
  117. Yoneda, T. (1998) Cellular and molecular mechanisms of breast and prostate cancer metastasis to bone. European Journal of Cancer 34, 240–245.PubMedGoogle Scholar
  118. Yonou, H., Kanomata, N., Goya, M., Kamijo, T., Yokose, T., Hasebe, T., Nagai, K., Hatano, T., Ogawa, Y. and Ochiai, A. (2003) Osteoprotegerin/osteoclastogenesis inhibitory factor decreases human prostate cancer burden in human adult bone implanted into nonobese diabetic/severe combined immunodeficient mice. Cancer Research 63, 2096–2102.PubMedGoogle Scholar
  119. Zhang, J., Dai, J., Qi, Y., Lin, D.L., Smith, P., Strayhorn, C., Mizokami, A., Fu, Z., Westman, J. and Keller, E.T. (2001) Osteoprotegerin inhibits prostate cancer-induced osteoclastogenesis and prevents prostate tumor growth in the bone. Journal of Clinical Investigation 107, 1235–1244.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • Julie M. Brown
    • 1
  • Jian Zhang
    • 2
  • Evan T. Keller
    • 2
  1. 1.UNSW Department of Clinical Medicine, Prince of Wales HospitalOncology Research CentreRandwickAustralia
  2. 2.Unit for Laboratory Animal Medicine and Department of PathologyUniversity of MichiganAnn ArborUSA

Personalised recommendations