Histological, Immunophenotypic and Histomorphometric Characterization of Prostate Cancer Bone Metastases

  • Martine P. Roudier
  • Eva Corey
  • Lawrence D. True
  • Celestia S. Hiagno
  • Susan M. Ott
  • Robert L. Vessella
Part of the Cancer Treatment and Research book series (CTAR, volume 118)


Carcinoma of the prostate (CaP) is the most common malignancy in older men in the United States. In 2002, more than 200,000 cases of CaP were diagnosed and an estimated 32,000 Americans died of this cancer (Jemal et al., 2002). Most of the devastating effects of prostate cancer can be attributed to its tendency to metastasize to bone. At the time of clinical presentation, 8% of Caucasian-Americans and 14% of African-Americans already have bone metastasis (Coffey, 1993; Whitmore, 1990), and bone metastases will develop in the majority of patients with recurrent hormoneindependent CaP. Bone metastases are a major cause of morbidity in patients with advanced CaP; major clinical features of bone metastases are intractable bone pain, fracture, spinal cord compression and eventually wasting and death. While the biology of the primary tumor has been intensively studied, the special aspects of CaP bone metastases that lead to abnormal bone growth not ordinarily seen in any other cancers are not extensively documented in the literature. In this chapter, we review the detection of CaP metastases, the predilection of CaP to spread to bone, the main phenotypic features of CaP in bone, and the characterization of the histological “osteoblastic” bone response. We conclude with a brief description of our osteoblastic xenograft model and comparison of this model to clinical bone metastases.


Prostate Cancer Androgen Receptor Bone Metastasis Prostate Specific Antigen Zoledronic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abrahamsson, P.A. (1999) Neuroendocrine cells in tumour growth of the prostate. Endocrinerelated Cancer, 6, 503–519.CrossRefGoogle Scholar
  2. Allen, F.J., Van Velden, D.J. and Heyns, C.F. (1995) Are neuroendocrine cells of practical value as an independent prognostic parameter in prostate cancer? British Journal of Urology, 75, 751–754.PubMedCrossRefGoogle Scholar
  3. Assikis, V.J., Elgamal, A., Tu, S.M., Daliani, D., Pagliaro, L., Logothetis, C. and Papandreou, C. (2002) Immonotherapy for androgen independent prostate cancer: Results of a Phase I trial with a tumor vaccine of autologous dendritic cells loaded with r-PSMA (DCVaxProstate). Proceedings of the American Association for Cancer Research, 42, 676, #3352.Google Scholar
  4. Balk, S.P. (2002) Androgen receptor as a target in androgen-independent prostate cancer. Urology, 60, 132–138.PubMedCrossRefGoogle Scholar
  5. Berges, R.R., Vukanovic, J., Epstein, J.I., CarMichel, M., Cisek, L., Johnson, D.E., Veltri, R.W., Walsh, P.C. and Isaacs, J.T. (1995) Implication of cell kinetic changes during the progression of human prostatic cancer. Clinical Cancer Research, 1, 473–480.PubMedGoogle Scholar
  6. Bohrer, M.H. and Schmoll, J. (1993) [Immunohistochemical and morphometric studies on neuroendocrine differentiation of prostate carcinomas]. Verhandlungen der Deutschen Gesellschaft fur Pathologie, 77, 107–110.PubMedGoogle Scholar
  7. Brown, R.S., Edwards, J., Dogan, A., Payne, H., Harland, S.J., Bartlett, J.M. and Masters, J.R. (2002) Amplification of the androgen receptor gene in bone metastases from hormonerefractory prostate cancer. Journal of Pathology, 198, 237–244.PubMedCrossRefGoogle Scholar
  8. Burki, F., Coindre, J.M. and Mauriac, L. (1987) Sclerotic bone metastases of prostatic origin and osteomalacia. Importance of a histomorphometry study. Progress in Clinical and Biological Research, 243A, 569–571.PubMedGoogle Scholar
  9. Byar, D. (1977) VACURG Studies on Prostatic Cancer and its Treatment. Urologic Pathology: The prostate. Tannenbaum M, Editor, Lea and Febiger, Philadelphia, 241–263.Google Scholar
  10. Carlier, D. (1903) Les metastases osseuses dans le cancer de la prostate. L’ Echo médical du Nord, 313–324.Google Scholar
  11. Carrasquillo, J.A., Whatley, M., Dyer, V., Figg, W.D. and Dahut, W. (2001) Alendronate does not interfere with 99mTc-methylene diphosphonate bone scanning. Journal of Nuclear Medicine, 42, 1359–1363.PubMedGoogle Scholar
  12. Chang, S.S., Gaudin, P.B., Reuter, V.E., O’Keefe, D.S., Bacich, D.J. and Heston, W.D. (1999) Prostate-specific membrane antigen: much more than a prostate cancer arker. Molecular Urology, 3, 313–320.PubMedGoogle Scholar
  13. Charhon, S.A., Chapuy, M.C., Delvin, E.E., Valentin-Opran, A., Edouard, C.M. and Meunier, P.J. (1983) Histomorphometric analysis of sclerotic bone metastases from prostatic carcinoma special reference to osteomalacia. Cancer, 51, 918–924.PubMedCrossRefGoogle Scholar
  14. Cheville, J.C., Tindall, D., Boelter, C., Jenkins, R., Lohse, CM., Pankratz, V.S., Sebo, T.J., Davis, B. and Blute, M.L. (2002) Metastatic prostate carcinoma to bone: clinical and pathologic features associated with cancer-specific survival. Cancer, 95, 1028–1036.PubMedCrossRefGoogle Scholar
  15. Clarke, N.W., McClure, J. and George, N.J. (1991a) Morphometric evidence for bone resorption and replacement in prostate cancer. British Journal of Urology, 68, 74–80.PubMedCrossRefGoogle Scholar
  16. Clarke, N.W., McClure, J. and George, N.J. (1993) The effects of orchidectomy on skeletal metabolism in metastatic prostate cancer. Scandinavian Journal of Urology and Nephrology, 27, 475–483.PubMedCrossRefGoogle Scholar
  17. Coffey, D.S. (1993) Prostate cancer. An overview of an increasing dilemma. Cancer, 71, 880–886.PubMedCrossRefGoogle Scholar
  18. Cohen, R.J., Glezerson, G. and Haffejee, Z. (1991) Neuro-endocrine cells-a new prognostic parameter in prostate cancer. British Journal of Urology, 68, 258–262.PubMedCrossRefGoogle Scholar
  19. Coindre, J.M., Mage, P., Bui, B.N., Goussot, J.F., De, M.I., De, M.A. and Trojani, M. (1985) Prostatic osteocondensing metastases and osteomalacia. Value of histomorphometric study. Preliminary results. Presse Médicale, 14, 1823–1827.Google Scholar
  20. Corey, E., Quinn, J.E., Bladou, F., Brown, L.G., Roudier, M.P., Brown, J.M., Buhler, K.R. and Vessella, R.L. (2002a) Establishment and characterization of osseous prostate cancer models: intra-tibial injection of human prostate cancer cells. The Prostate, 52, 20–33.PubMedCrossRefGoogle Scholar
  21. Corey, E., Brown, L.G., Quinn, J.E., Poot, M., Roudier M.P, Higano, C.S. and Vessella R.L. (2002b) Zoledronic acid exhibits inhibitory effects on osteoblastic and osteolytic metastases of prostate cancer. Clinical Cancer Research, 9, 295–306.Google Scholar
  22. Darson, M.F., Pacelli, A., Roche, P., Rittenhouse, H.G., Wolfert, R.L., Young, C.Y., Klee, G.G., Tindall, D.J. and Bostwick, D.G. (1997) Human glandular kallikrein 2 (hK2) expression in prostatic intraepithelial neoplasia and adenocarcinoma: a novel prostate cancer marker. Urology, 49, 857–862.PubMedCrossRefGoogle Scholar
  23. de 1a Monte, S.M., Moore, G.W. and Hutchins, G.M. (1986) Metastatic behavior of prostate cancer. Cluster analysis of patterns with respect to estrogen treatment. Cancer, 58, 985–993.CrossRefGoogle Scholar
  24. Elgamal, A.A., Troychak, M.J. and Murphy, G.P. (1998) ProstaScint scan may enhance identification of prostate cancer recurrences after prostatectomy, radiation, or hormone therapy: analysis of 136 scans of 100 patients. The Prostate, 37, 261–269.PubMedCrossRefGoogle Scholar
  25. Fitton, A. and McTavish, D. (1991) Pamidronate. A review of its pharmacological properties and therapeutic efficacy in resorptive bone disease. Drugs, 41, 289–318.PubMedCrossRefGoogle Scholar
  26. Furuya, Y., Akakura, K., Tobe, T., Ichikawa, T., Igarashi, T. and Ito, H. (2001) Prognostic significance of changes in prostate-specific antigen in patients with metastasis prostate cancer after endocrine treatment. International Urology and Nephrology, 32, 659–663.PubMedCrossRefGoogle Scholar
  27. Galasko, C.S. (1969) The detection of skeletal metastases from mammary cancer by gamma camera scintigraphy. British Journal of Surgery, 56, 757–764.PubMedCrossRefGoogle Scholar
  28. Galasko, C.S. (1975) The value of scintigraphy in malignant disease. Cancer Treatment Reviews, 2, 225–272.PubMedCrossRefGoogle Scholar
  29. Galasko, C.S. (1977) Detection of bone metastases. British Medical Journal, 1, 1537.PubMedCrossRefGoogle Scholar
  30. Galasko, C.S. (1986) Skeletal metastases. Clinical Orthopaedics And Related Research, 18–30.Google Scholar
  31. Gulenchyn, K.Y. and Papoff, W. (1987) Technetium-99m MDP scintigraphy. An insensitive tool for the detection of bone marrow metastases. Clinical Nuclear Medicine, 12, 45–46.PubMedCrossRefGoogle Scholar
  32. Harada, M., Iida, M., Yamaguchi, M. and Shida, K. (1992) Analysis of bone metastasis of prostatic adenocarcinoma in 137 autopsy cases. Prostate Cancer and Bone Metastasis. Edited by J.P. Karr and H Yamanaka, Plenum Press, New York, 173–182.CrossRefGoogle Scholar
  33. Heaney, R.P. (1994) The bone-remodeling transient: implications for the interpretation of clinical studies of bone mass change. Journal of Bone and Mineral Research, 9, 1515–1523.PubMedCrossRefGoogle Scholar
  34. Ikeda, I., Miura, T. and Kondo, I. (1996) Pyridinium cross-links as urinary markers of bone metastases in patients with prostate cancer. British Journal of Cancer, 77, 102–106.Google Scholar
  35. Jacobs, S.C. (1983) Spread of prostatic cancer to bone. Urology, 21, 337–344.PubMedCrossRefGoogle Scholar
  36. Jacobson, A.F., Stomper, P.C., Cronin, E.B. and Kaplan, W.D. (1990) Bone scans with one or two new abnormalities in cancer patients with no known metastases: reliability of interpretation of initial correlative radiographs. Radiology, 174, 503–507.PubMedGoogle Scholar
  37. Jemal, A., Thomas, A., Murray, T. and Thun, M. (2002) Cancer statistics, 2002. CA-A Cancer Journal for Clinicians, 52, 23–47.PubMedCrossRefGoogle Scholar
  38. Jorda, M., Morales, A., Ghorab, Z., Fernandez, G., Nadji, M. and Block, N. (2002) Her2 expression in prostatic cancer: a comparison with mammary carcinoma. Journal of Urology, 168, 1412–1414.PubMedCrossRefGoogle Scholar
  39. Koutsilieris, M. (1993) Osteoblastic metastasis in advanced prostate cancer. Anticancer Research, 13, 443–449.PubMedGoogle Scholar
  40. Krasnow, A.Z., Collier, B.D., Isitman, A.T., Hellman, R.S. and Ewey, D. (1988) Falsenegative bone imaging due to etidronate disodium therapy. Clinical Nuclear Medicine, 13, 264–267.PubMedCrossRefGoogle Scholar
  41. Lamothe, F., Kovi, J., Heshmat, M.Y. and Green, E.J. (1986) Dissemination of prostatic carcinoma: an autopsy study. Journal of the National Medical Association, 78, 1083–1086.PubMedGoogle Scholar
  42. Lara, P.N., Jr., Meyers, F.J., Gray, C.R., Edwards, R.G., Gumerlock, P.H., Kauderer, C., Tichauer, G., Twardowski, P., Doroshow, J.H. and Gandara, D.R. (2002) HER-2/neu is overexpressed infrequently in patients with prostate carcinoma. Results from the California Cancer Consortium Screening Trial. Cancer, 94, 2584–2589.PubMedCrossRefGoogle Scholar
  43. Leav, I., Lau, K.M., Adams, J.Y., McNeal, J.E., Taplin, M.E., Wang, J., Singh, H. and Ho, S.M. (2001) Comparative studies of the estrogen receptors beta and alpha and the androgen receptor in normal human prostate glands, dysplasia, and in primary and metastatic carcinoma. American Journal of Pathology, 159, 79–92.PubMedCrossRefGoogle Scholar
  44. Ligibel, J.A. and Winer, E.P. (2002) Trastuzumab/chemotherapy combinations in metastatic breast cancer. Seminars in Oncology, 29, 38–43.PubMedGoogle Scholar
  45. Macro, M., Bouvard, G., Le Gangneux, E., Colin, T. and Loyau, G. (1995) Intravenous aminohydroxypropylidene bisphosphonate does not modify 99mTc-hydroxymethylene bisphosphonate bone scintigraphy. A prospective study. Revue du rhumatisme (English ed), 62, 99–104.PubMedGoogle Scholar
  46. Maeda, H., Koizumi, M., Yoshimura, K., Yamauchi, T., Kawai, T. and Ogata, E. (1997) Correlation between bone metabolic markers and bone scan in prostatic cancer. Journal of Urology, 157, 539–543.PubMedCrossRefGoogle Scholar
  47. Masarachia, P., Weinreb, M., Balena, R. and Rodan, G.A. (1996) Comparison of the distribution of 3H-alendronate and 3H-etidronate in rat and mouse bones. Bone, 19, 281–290.PubMedCrossRefGoogle Scholar
  48. McCarthy, E.F. (1997) Histopathologic correlates of a positive bone scan. Seminars in Nuclear Medicine, 27, 309–320.PubMedCrossRefGoogle Scholar
  49. Mintz, R. and Smith, G.G. (1934) Autopsy findings in 100 cases of prostatic cancer. New England Journal of Medicine, 211, 481–487.CrossRefGoogle Scholar
  50. Morris, M.J., Reuter, V.E., Kelly, W.K., Slovin, S.F., Kenneson, K., Verbel, D., Osman, I. and Scher, H.I. (2002) HER-2 profiling and targeting in prostate carcinoma. Cancer, 94, 980–986.PubMedCrossRefGoogle Scholar
  51. Murphy, G.P., Elgamal, A.A., Su, S.L., Bostwick, D.G. and Holmes, E.H. (1998) Current evaluation of the tissue localization and diagnostic utility of prostate specific membrane antigen. Cancer, 83, 2259–2269.PubMedCrossRefGoogle Scholar
  52. Osman, I., Scher, H.I., Drobnjak, M., Verbel, D., Morris, M., Agus, D., Ross, J.S. and Cordon-Cardo, C. (2001) HER-2/neu (pl85neu) protein expression in the natural or treated history of prostate cancer. Clinical Cancer Research, 7, 2643–2647.PubMedGoogle Scholar
  53. Oyama, N., Akino, H., Kanamaru, H., Suzuki, Y., Muramoto, S., Yonekura, Y., Sadato, N., Yamamoto, K. and Okada, K. (2002) 1 lC-acetate PET imaging of prostate cancer. Journal of Nuclear Medicine, 43, 181–186.PubMedGoogle Scholar
  54. Parfitt, A.M., Drezner, M.K., Glorieux, F.H., Kanis, J.A., Malluche, H., Meunier, P.J., Ott, S.M. and Recker, R.R. (1987) Bone histomorphometry: standardization of nomenclature, symbols, and units. Report of the ASBMR Histomorphometry Nomenclature Committee. Journal of Bone and Mineral Research, 2, 595–610.PubMedCrossRefGoogle Scholar
  55. Paulson, D.F. (1980) Assessment of anatomic extent and biologic hazard of prostatic adenocarcinoma. Urology, 15, 537–541.PubMedCrossRefGoogle Scholar
  56. Pecherstorfer, M., Schilling, T., Janisch, S., Woloszczuk, W., Baumgartner, G., Ziegler, R. and Ogris, E. (1993) Effect of clodronate treatment on bone scintigraphy in metastatic breast cancer. Journal of Nuclear Medicine, 34, 1039–1044.Google Scholar
  57. Percival, R.C., Urwin, G.H., Harris, S., Yates, A.J., Williams, J.L., Beneton, M. and Kanis, J.A. (1987a) Biochemical and histological evidence that carcinoma of the prostate is associated with increased bone resorption. European Journal of Surgical Oncology, 13, 41–49.PubMedGoogle Scholar
  58. Rana, A., Chisholm, G.D., Khan, M., Sekharjit, S.S., Merrick, M.V. and Elton, R.A. (1993) Patterns of bone metastasis and their prognostic significance in patients with carcinoma of the prostate. British Journal of Urology, 72, 933–936.PubMedCrossRefGoogle Scholar
  59. Reuter, V.E. (1997) Pathological changes in benign and malignant prostatic tissue following androgen deprivation therapy. Urology, 49, 16–22.PubMedCrossRefGoogle Scholar
  60. Rhodes, A., Jasani, B., Anderson, E., Dodson, A.R. and Balaton, A.J. (2002) Evaluation of HER-2/neu immunohistochemical assay sensitivity and scoring on formalin-fixed and paraffin-processed cell lines and breast tumors: a comparative study involving results from laboratories in 21 countries. American Journal of Clinical Pathology, 118, 408–417.PubMedCrossRefGoogle Scholar
  61. Rico, H., Uson, A., Hernandez, E.R., Prados, P., Paramo, P. and Cabranes, J.A. (1990) Hyperparathyroidism in metastases of prostatic carcinoma: a biochemical, hormonal and histomorphometric study. European Urology, 17, 35–39.PubMedGoogle Scholar
  62. Rittenhouse, H.G., Finlay, J.A., Mikolajczyk, S.D. and Partin, A.W. (1998) Human Kallikrein 2 (hK2) and prostate specific antigen (PSA): Two clossely related, but distinct, kallikreins in the prostate. Critical Reviews in Clinical Laboratory Sciences, 35, 275–368.PubMedCrossRefGoogle Scholar
  63. Ro, J.Y., Tetu, B., Ayala, A.G. and Ordonez, N.G. (1987) Small cell carcinoma of the prostate. II. Immunohistochemical and electron microscopic studies of 18 cases. Cancer, 59, 977–982.PubMedCrossRefGoogle Scholar
  64. Roudier, M.P., Vesselle, H., True, L.D., Higano, C.S., Vessella, R. (2003) Concordance between bone histology and Technetium99 methylene diophosphonate bone scintigraphy in advanced prostate cancer patients with special reference to Pamidronate treatment. Clinical and Experimental Metastasis, in press.Google Scholar
  65. Roudier, M.P., True, L.D., Higano, C.S., Vesselle, H., Ellis W.J., Lange, P.H. and Vessella, R.L. (2002) Phenotypic heterogeneity of androgen-independent prostate cancer bone metastases. Human Pathology, (submitted).Google Scholar
  66. Rubin, M.A., Putzi, M., Mucci, N., Smith, D.C., Wojno, K., Korenchuk, S. and Pienta, K.J. (2000) Rapid (“warm” ) autopsy study for procurement of metastatic prostate cancer. Clinical Cancer Research, 6, 1038–1045.PubMedGoogle Scholar
  67. Ryan, P.J., Gibson, T. and Fogelman, I. (1992) Bone scintigraphy following intravenous pamidronate for Paget’ s disease of bone. Journal of Nuclear Medicine, 33, 1589–1593.PubMedGoogle Scholar
  68. Saad, F., Gleason, D.M., Murray, R., Tchekmedyian, S., Venner, P., Lacombe, L., Chin, J.L., Vinholes, J.J., Goas, J.A. and Chen, B. (2002) A randomized, placebo-controlled trial of zoledronic acid in patients with hormone-refractory metastatic prostate carcinoma. Journal of the National Cancer Institute, 94, 1458–1468.PubMedCrossRefGoogle Scholar
  69. Saitoh, H., Hida, M., Shimbo, T., Nakamura, K., Yamagata, J. and Satoh, T. (1984) Metastatic patterns of prostatic cancer. Correlation between sites and number of organs involved. Cancer, 54, 3078–3084.PubMedCrossRefGoogle Scholar
  70. Sanchez, K.M., Sweeney, C.J., Mass, R., Koch, M.O., Eckert, G.J., Geary, W.A., Baldridge, L.A., Zhang, S., Eble, J.N. and Cheng, L. (2002) Evaluation of HER-2/neu expression in prostatic adenocarcinoma: a requested for a standardized, organ specific methodology. Cancer, 95, 1650–1655.PubMedCrossRefGoogle Scholar
  71. Sandler, E.D., Parisi, M.T. and Hattner, R.S. (1991) Duration of etidronate effect demonstrated by serial bone scintigraphy. Journal of Nuclear Medicine, 32, 1782–1784.PubMedGoogle Scholar
  72. Sebo, T.J., Cheville, J.C., Riehle, D.L., Lohse, C.M., Pankratz, V.S., Myers, R.P., Blute, M.L. and Zincke, H. (2002) Perineural invasion and MIB-1 positivity in addition to Gleason score are significant preoperative predictors of progression after radical retropubic prostatectomy for prostate cancer. American Journal of Surgical Pathology, 26, 431–439.PubMedCrossRefGoogle Scholar
  73. Shankar, G., Kelley, H., Samadzadeh, L., Lodge, A., Boynton, A., Papandreou, C., Logothetis, C., Belldegrun, A. and Elgamal, A. (2002) Induction of tumor antigen-specific immune responses in hormone-refractory priostate cancer patients treated with DCVaxPtostate in a Phase I/II clinical trial. Proceedings of the American Association for Cancer Research, 43, 144, #716.Google Scholar
  74. Signoretti, S., Montironi, R., Manola, J., Altimari, A., Tarn, C., Bubley, G., Balk, S., Thomas, G., Kaplan, I., Hlatky, L., Hahnfeldt, P., Kantoff, P. and Loda, M. (2000) Her-2-neu expression and progression toward androgen independence in human prostate cancer. Journal of the National Cancer Institute, 92, 1918–1925.PubMedCrossRefGoogle Scholar
  75. Slamon, D.J. (1987) Proto-oncogenes and human cancers. New England Journal of Medicine, 317, 955–957.PubMedCrossRefGoogle Scholar
  76. Slamon, D.J., Clark, G.M., Wong, S.G., Levin, W.J., Ullrich, A. and McGuire, W.L. (1987) Human breast cancer: correlation of relapse and survival with amplification of the HER2/neu oncogene. Science, 235, 177–182.PubMedCrossRefGoogle Scholar
  77. Spigel, D.R. and Burstein, HJ. (2002) HER2 overexpressing metastatic breast cancer. Current Treatment Options in Oncology, 3, 163–174.PubMedCrossRefGoogle Scholar
  78. Stein, B.S., Vangore, S. and Petersen, R.O. (1984) Immunoperoxidase localization of prostatic antigens. Comparison of primary and metastatic sites. Urology, 24, 146–152.PubMedCrossRefGoogle Scholar
  79. Suzuki, T., Shimizu, T., Kurokawa, K., Jimbo, H., Sato, J. and Yamanaka, H. (1994) Pattern of prostate cancer metastasis to the vertebral column. Prostate, 25, 141–146.PubMedCrossRefGoogle Scholar
  80. Takeuchi, S.I., Arai, K., Saitoh, H., Yoshida, K.I. and Miura, M. (1996) Urinary pyridinoline and deoxypyridinoline as potential markers of bone metastasis in patients with prostate cancer. Journal of Urology, 156, 1691–1695.PubMedCrossRefGoogle Scholar
  81. Taube, T., Beneton, M.N., Williams, J.L., McCloskey, E.V. and Kanis, J.A. (1993) Distinction between focally accelerated bone formation and osteomalacia in carcinoma of prostate metastasised to bone. British Journal of Urology, 72, 98–103.PubMedCrossRefGoogle Scholar
  82. Taube, T., Elomaa, I., Blomqvist, C., Beneton, M.N. and Kanis, J.A. (1994) Histomorphometric evidence for osteoclast-mediated bone resorption in metastatic breast cancer. Bone, 15, 161–166.PubMedCrossRefGoogle Scholar
  83. Thompson, H. (1854) Comments. Transactions of the Pathology Society of London, 5, 204.Google Scholar
  84. Van der Kwast, T.H. and Tetu, B. (1996) Androgen receptors in untreated and treated prostatic intraepithelial neoplasia. European Urology, 30, 265–268.PubMedGoogle Scholar
  85. Watt, I. and Hill, P. (1981) Effects of acute administration of ethane hydroxydiphosphonate (EHDP) on skeletal scintigraphy with technetium-99m methylene diphosphonic acid (TcMDP) in the rat. British Journal of Radiology, 54, 592–596.PubMedCrossRefGoogle Scholar
  86. Weinstein, M.H., Partin, A.W., Veltri, R.W. and Epstein, J.I. (1996) Neuroendocrine differentiation in prostate cancer: enhanced prediction of progression after radical prostatectomy. Human Pathology, 27, 683–687.PubMedCrossRefGoogle Scholar
  87. Whitmore, Jr.W.F. (1990) Natural history of low-stage prostatic cancer and the impact of early detection. Urologic Clinics of North America, 17, 689–697.PubMedGoogle Scholar
  88. Yao, D., Trabulsi, E.J., Kostakoglu, L., Vallabhajosula, S., Joyce, M.A., Nanus, D.M., Milowsky, M., Liu, H. and Goldsmith, S.J. (2002) The utility of monoclonal antibodies in the imaging of prostate cancer. Seminars in Urologic Oncology, 20, 211–218.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • Martine P. Roudier
    • 1
  • Eva Corey
    • 1
  • Lawrence D. True
    • 2
  • Celestia S. Hiagno
    • 3
  • Susan M. Ott
    • 4
  • Robert L. Vessella
    • 1
    • 5
  1. 1.Department of UrologyUniversity of Washington Medical CenterSeattleUSA
  2. 2.Department of PathologyUniversity of Washington Medical CenterSeattleUSA
  3. 3.Department of Medicine (Oncology)University of Washington Medical CenterSeattleUSA
  4. 4.Department of Medicine (Metabolism)University of Washington Medical CenterSeattleUSA
  5. 5.VA Puget Sound Health Care System, Research ServiceSeattleUSA

Personalised recommendations