Bisphosphonate Actions on Bone and Visceral Metastases

  • Toshiyuki Yoneda
  • Nobuyuki Hashimoto
  • Toru Hiraga
Part of the Cancer Treatment and Research book series (CTAR, volume 118)


Bone abundantly stores a variety of growth factors and thus provides migrating cancer cells with fertile soil. Osteoclastic bone resorption releases these growth factors providing fertile environment, which allows colonizing cancer cells to proliferate and survive. Consequently, cancer cells produce a variety of factors that in turn influence bone metabolism. This intimate partnership between cancer cells and bone will be a driving force to develop and progress bone metastases. Accordingly, suppression of osteoclastic bone resorption should be a logic approach to inhibit bone metastases. Bisphosphonates (BPs), specific inhibitors of osteoclasts, have been widely used for the treatment of bone metastases in cancer patients. In addition, recent studies suggest the possibility that BPs can reduce visceral metastases by inhibiting cell growth and inducing apoptosis in cancer cells. In this chapter, the authors will review the recent experimental results regarding the effects of BPs on bone and visceral metastases and also show their own data obtained using animal models of breast cancer metastasis. Accumulating data suggest that there is no doubt that BPs are beneficial for the treatment of existing bone metastases, while the beneficial effects of BPs on visceral metastases are not warranted yet.


Breast Cancer Bone Metastasis Zoledronic Acid Skeletal Metastasis Visceral Metastasis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adami, S. (1997) Bisphosphonates in prostate carcinoma. Cancer, 80, 1674–1679.PubMedCrossRefGoogle Scholar
  2. Bataille, R. (1996) Management of myeloma with bisphosphonates. New England Journal of Medicine, 334, 529–535.PubMedCrossRefGoogle Scholar
  3. Berenson, J.R., Lichtehstein, A., Porter, L., Dimopoulos, M.A., Bordoni, R., George, S., Lipton, A., Keller, A., Ballester, O., Kovacs, M.J., Blacklock, H.A., Bell, R., Simeone, J., Reitsman, D.J., Heffernan, M., Seaman, J. and Knight, R.D. (1996) Efficacy of pamidronate in reducing the skeletal events in patients with advanced multiple myeloma. New England Journal of Medicine, 334, 488–493.PubMedCrossRefGoogle Scholar
  4. Berenson, J.R., Hillner, B.E., Kyle, R.A., Anderson, K., Lipton, A., Yee, G.C. and Biermann, J.S. (2002) American Society of Clinical Oncology Bisphosphonates Expert Panel American Society of Clinical Oncology clinical practice guidelines: the role of bisphosphonates in multiple myeloma. Journal of Clinical Oncology, 20, 3719–3736.PubMedCrossRefGoogle Scholar
  5. Berruti, A., Dogliotti, L., Bitossi, R., Fasolis, G., Gorzegno, G., Bellina, M, Torta, M., Porpiglia, F., Fontana, D. and Angeli, A.I. (2000) Incidence of skeletal complications in patients with bone metastatic prostate cancer and hormone refractory disease: predictive role of bone resorption and formation markers evaluated at baseline. Journal of Urology, 164, 1248–1253.PubMedCrossRefGoogle Scholar
  6. Bloomfield, D.J. (1998) Should bisphosphonates be part of the standard therapy of patients with multiple myeloma or bone metastases from other cancers? An evidence-based review. Journal of Clinical Oncology, 16, 1218–1225.PubMedGoogle Scholar
  7. Body, J.J., Bartl, R., Burckhardt, P., Delmas, P.D., Diel, I.J., Fleish, H., Kanis, J.A., Kyle, R.A., Mundy, G.R. and Paterson, A. H. G. Rubens, R. D. (1998) Current use of bisphosphonates in oncology. Journal of Clinical Oncology, 16, 3890–3899.PubMedGoogle Scholar
  8. Boisser, S., Magnetto, S., Frappart, L., Cuzin, B., Ebetino, F.H., Delmas, P.D. and Clezardin, P. (1997) Bisphosphonates inhibit prostate and breast carcinoma cell adhesion to unmineralized and mineralized bone extracellular matrices. Cancer Research, 57, 3890–3894.Google Scholar
  9. Boissier, S., Ferreras, M., Peyruchaud, O., Magnetto, S., Ebetino, F.H., Colombel, M., Delmas, P., Delaisse, J.M. and Clezardin, P. (2000) Bisphosphonates inhibit breast and prostate carcinoma cell invasion, an early event in the formation of bone metastases. Cancer Research, 60, 2949–2954.PubMedGoogle Scholar
  10. Carlin, BI. and Andriole, GL. (2000) The natural history, skeletal complications, and management of bone metastases in patients with prostate carcinoma. Cancer, 88, (12 Suppl), 2989–2994.PubMedCrossRefGoogle Scholar
  11. Clarke, N.W., McClure, J. and George, N.J.R. (1991) Morphometric evidence for bone résorption and replacement in prostate cancer. British Journal of Urology, 68, 74–80.PubMedCrossRefGoogle Scholar
  12. Coleman, R.E. and Rubens, R.D. (1987) The clinical course of bone metastases from breast cancer. British Journal of Cancer, 55, 61–66.PubMedCrossRefGoogle Scholar
  13. Coleman, R.E. (1997) Skeletal Complications of malignancy. Cancer, 80, 1588–1594.PubMedCrossRefGoogle Scholar
  14. Croucher, P.I., De, Hendrik. R., Perry, MJ., Hijzen, A., Shipman, C.M., Lippitt, J., Green, J., Van, Marck. E., Van, Camp. B. and Vanderkerken, K. (2003) Zoledronic acid treatment of 5T2MM-bearing mice inhibits the development of myeloma bone disease: evidence for decreased osteolysis, tumor burden and angiogenesis, and increased survival. Journal of Bone and Mineral Research, 18, 482–492.PubMedCrossRefGoogle Scholar
  15. Diel, I.J., Solomayer, E-F., Costa, S.D., Gollan, C., Goerner, R., Wallwiener, D., Kaufmann, M. and Bastert, G.. (1998) Reduction in new metastases in breast cancer with adjuvant clodronate treatment. New England Journal of Medicine, 339, 357–363.PubMedCrossRefGoogle Scholar
  16. Diel, I.J., Solomayer, E-F., Gollan, C, Shutz, F. and Bastert, G. (2000) Bisphosphonates in the reduction of metastases in breast cancer-Results of the extended follow-up of the first study population. Proceedings of the American Society for Clinical Oncology (ASCO) Abst # 314Google Scholar
  17. Fisher, J.E., Rogers, M.J., Halasy, J.M., Luckman, S.P., Hughes, D.E., Masarachia, P.J., Wesolowski, G., Rüssel, R.G.G., Rodan, G.A. and Reszka, A.A. (1999) Alendronate mechanism of action: geranylgeraniol, an intermediate in the mevalonate pathway, prevents inhibition of osteoclast formation, bone resorption, and kinase activation in vitro. Proceedings of the National Academy of Sciences of the United States of America, 96, 133–138.PubMedCrossRefGoogle Scholar
  18. Fleisch, H., Reszka, A., Rodan, G., Rogers, M. (2001) Bisphosphonates: Mechanism of action. In Principles of Bone Biology (Eds. Bilezikian JP, Raisz LG, Rodan GA), Academic Press, San Diego, pp.1361–1385.Google Scholar
  19. Fournier, P., Boissier, S., Filleur, S., Guglielmi, J., Cabon, F., Colombel, M. and Clezardin, P. (2002) Bisphosphonates inhibit angiogenesis in vitro and testosterone-stimulated vascular regrowth in the ventral prostate in castrated rats. Cancer Research, 62, 6538–6544.PubMedGoogle Scholar
  20. Fromigue, O., Lagneaux, L. and Body, J.J. (2000) Bisphosphonates induce breast cancer cell death in vitro. Journal of Bone and Mineral Research, 45, 2211–2221.CrossRefGoogle Scholar
  21. Garnero, P., Buchs, N., Zekri, J., Rizzoli, R., Coleman, RE. and Deliras, P.D. (2000) Markers of bone turnover for the management of patients with bone metastases from prostate cancer. British Journal of Cancer, 82, 858–864.PubMedCrossRefGoogle Scholar
  22. Green, J.R., Muller, K. and Jaeggi, K.A. (1994) Preclinical pharmacology of CGP 42’ 446, a new, potent, heterocyclic bisphosphonate compound. Journal of Bone and Mineral Research, 9, 745–751.PubMedCrossRefGoogle Scholar
  23. Hauschka, PV., Manrakos, A.E., Iafrati, M.D., Doleman, S.E. and Klagsbrun, M. (1986) Growth factors in bone matrix. Isolation of multiple types of affinity chromatography on heparin sepharose. Journal of Biological Chemistry, 261, 12665–12674.PubMedGoogle Scholar
  24. Hillner, B.E., Ingle, J.N., Berenson, J.R., Janjan, N.A., Albain, K.S., Lipton, A., Yee, G., Biermann, J.S., Chlebowski, RT. and Pfister, D.G. (2000) American society of clinical oncology guideline on the role of bisphosphonates in breast cancer. Journal of Clinical Oncology, 18, 1378–1391.PubMedGoogle Scholar
  25. Hiraga, T., Williams, P.J., Mundy, G..R. and Yoneda, T. (2001) The bisphosphonate ibandronate promotes apoptosis in MDA-231 human breast cancer cells in bone metastases. Cancer Research, 61, 4418–4424.PubMedGoogle Scholar
  26. Hiraga, T., Ueda, A., Tamura, D., Hata, K., Williams, P.J., Ikeda, F., Yoneda, T. Effects of oral UFT combined with or without zoledronic acid on distant metastasis in the 4Tl/luc mouse breast cancer. Cancer (in press).Google Scholar
  27. Ho, DH., Pazdur, R., Covington, W., Brown, N., Huo, Y.Y., Lassere, Y. and Kuritani, J. (1998) Comparison of 5-fluorouracil pharmacokinetics in patients receiving continuous 5-fluorouracil infusion and oral uracil plus Nl-(2’-tetrahydrofuryl)-5-fluorouracil. Clinical Cancer Research, 4, 2085–2088.PubMedGoogle Scholar
  28. Hortobagyi, G.N., Theriault, R.L., Porter, L., Blayney, D., Lipton, A., Sinoff, C., Wheeler, H., Simeone, J.F., Seaman, J., Knight, R.D., Heffernan, M. and Reitsman, D.J. (1996a) Efficacy of pamidronate in reducing skeletal complications in patients with breast cancer and lytic bone metastases. New England Journal of Medicine, 335, 1785–1791.PubMedCrossRefGoogle Scholar
  29. Hortobagyi, GN. and Piccart-Gebhart, MJ. (1996b) Current management of advanced breast cancer. Seminars in Oncology, 23 (Suppl. 11), 1–5.PubMedGoogle Scholar
  30. Hughes, D.E., Wright, K.R., Uy, H.L., Sasaki, A., Yoneda, T., Roodman, G.D., Mundy, G.R. and Boyce, B.F.(1995) Bisphosphonates promote apoptosis in murine osteoclasts in vitro and in vivo. Journal of Bone and Mineral Research, 10, 1478–1487.PubMedCrossRefGoogle Scholar
  31. Kamby, C., Andersen, J., Ejlertsen, B., Birkler, N.E., Rytter, L., Zedeler, K., Thorpe, S.M., Norgaard, T., Rose, C. (1988) Histological grade and steroid receptor content of primary breast cancer — impact on prognosis and possible modes of action. British Journal of Cancer, 58, 480–486.PubMedCrossRefGoogle Scholar
  32. Koenders, P.G., Beex, L.V.A.M., Langens, R., Kloppenborg, P.W.C., Smals, A.G.H. and Benraad, T.H.J. (1991) Breast cancer study group. Breast Cancer Research and Treatment, 18, 27–32.PubMedCrossRefGoogle Scholar
  33. Kostenuik, P.J., Orr, F.W., Suyama, K. and Singh, G. (1993) Increased growth rate and tumor burden of spontaneously metastatic Walker 256 cancer cells in the skeleton of bisphosphonates-treated rats. Cancer Research, 53, 5452–5457.PubMedGoogle Scholar
  34. Lee, M.V., Fong, E.M., Singer, F.R. and Guenette, R.S. (2001) Bisphosphonate treatment inhibits the growth of prostate cancer cells. Cancer Research, 61, 2602–260.PubMedGoogle Scholar
  35. Lipton, A. (1997) Bisphosphonates and breast cancer. Cancer, 80, 1668–1673.PubMedCrossRefGoogle Scholar
  36. Luckman, S.P., Hughes, D.E., Coxon, F. P., Russell, R.G.G. and Rogers, M.J. (1998) Nitrogen-containing bisphosphonates inhibit the mevalonate pathway and prevent posttransitional prenylation of GTP-binding proteins, including Ras. Journal of Bone and Mineral Research, 13, 581–589.PubMedCrossRefGoogle Scholar
  37. Michigami, T., Hiraga, T., Williams, P.J., Nishimura, R., Mundy, G.R. and Yoneda, T. (2002) The effect of the bisphosphonate ibandronate on breast cancer metastasis to visceral organs. Breast Cancer Research and Treatment, 75, 249–258.PubMedCrossRefGoogle Scholar
  38. Milch, R.A. and Changus, G.W. (1956) Response of bone to tumor invasion. Cancer, 9, 340–351.PubMedCrossRefGoogle Scholar
  39. Mundy, G.R. and Yoneda, T. (1998) Bisphosphonates as anticancer drug. New England Journal of Medicine, 339, 357–363.CrossRefGoogle Scholar
  40. Paget, S. (1889) The distribution of secondary growths in cancer of the breast. Lancet, 1, 571–573.CrossRefGoogle Scholar
  41. Pecherstorfer, M., Ludwig, H., Zimmer-Roth, H., Schiling, T., Woitge, H.W., Schmidt, H., Baumgartner, G., Thiebaud, D., Ludwig, H. and Seibel, M.J. (1995) The diagnostic value of urinary pyridinium cross-links of collagen, alkaline phosphatase and urinary calcium excretion in neoplastic bone disease. The Journal of Clinical Endocrinology and Metabolism, 121, 542–548.Google Scholar
  42. Powles, T., Paterson, S., Kanis, J.A., McCloskey, E., Ashley, S., Tidy, A., Rosenqvist, K., Smith, I., Ottestad, L., Legault, S., Pajunen, M., Nevantaus, A., Männistö, E., Suovuori, A., Atula, S., Nevalainen, J. and Pylkkänen, L. (2002) Randomized, placebo-controlled trial of clodronate in patients with primary operable breast cancer. Journal of Clinical Oncology, 20, 3219–3224.PubMedCrossRefGoogle Scholar
  43. Rosen, L.S., Gordon, D., Kaminski, M., Howell, A., Belch, A., Mackey, J.A., Apffelstaedt, J., Hussein, M., Coleman, RE., Reitsma, D.J., Seaman, J.J., Chen, B.L., Ambros, Y. (2001a) Zoledronic acid versus pamidronate in the treatment of skeletal metastases in patients with breas cancer or osteolytic lesions of multiple myeloma: a phase III, double-blind, comparative trial. Cancer, 7, 377–387.Google Scholar
  44. Rosen, L., Gordon, D. and Tchekmedyian, S. (2001b) Zometa significantly increased the median time to first skeletal related event (SRE) in patients with osteolytic bone metastases from non-small cell lung cancer (NSCLC) and other solid tumors (OST). Lung Cancer, 34, Suppl 1.Google Scholar
  45. Saad, F., Gleason, DM., Murray, R., Tchekmedyian, S., Venner, P., Lacombe, L., Chin, J.L., Vinholes, J.J., Goas, J.A. and Chen, B. (2002) Zoledronic Acid Prostate Cancer Study Group. A randomized, placebo-controlled trial of zoledronic acid in patients with hormone-refractory metastatic prostate carcinoma. Journal of the National Cancer Institute, 94, 1458–1468.PubMedCrossRefGoogle Scholar
  46. Saarto, T., Blomqvist, C., Virkkunen, P. and Elomaa, I.I. (2001) Adjuvant clodronate treatment does not reduce the frequency of skeletal metastases in node-positive breast cancer patients: 5-year results of a randomized controlled trial. Journal of Clinical Oncology, 19,10–17.PubMedGoogle Scholar
  47. Sasaki, A., Boyce, B.F., Story, B., Wright, K.R., Chapman, M., Boyce, R., Mundy, G.R. and Yoneda, T. (1995) Bisphosphonate risedronate reduces metastatic human breast cancer burden in bone in nude mice. Cancer Research, 55, 3551–3557.PubMedGoogle Scholar
  48. Sato, M., Grasser, W., Endo, N., Akins, R., Simmons, H., Thompson, D.D., Golub, E. and Rodan, G.A. (1991) Bisphosphonate action. Alendronate localization in rat bone and effects on osteoclast ultrastructure. Journal of Clinical Investigation, 88, 2095–2105.PubMedCrossRefGoogle Scholar
  49. Sawada, K., Morishige, K., Tahara, M., Kawagishi, R., lkebuchi, Y., Tasaka, K. and Murata, Y. (2002) Alendronate inhibits lysophosphatidic acid-induced migration of human ovarian cancer cells by attenuating the activation of Rho. Cancer Research, 62, 6015–6020.PubMedGoogle Scholar
  50. Shipman, C.M., Rogers, M.J., Apperley, J.F., Russell, R.G.G. and Croucher, P.I. (1997) Bisphosphonate induces apoptosis in human myeloma cell lines: a novel anti-tumour activity. British Journal of Haematology, 98, 665–672.PubMedCrossRefGoogle Scholar
  51. Shipman, C.M., Croucher, P.I., Russell, R.G.G., Helfrich, M.H. and Rogers, M.J. (1999) The bisphosphonate incadronate (YM175) causes apoptosis of human myeloma cells in vitro by inhibiting the mevalonate pathway. Cancer Research, 58, 5294–5297.Google Scholar
  52. Stearns, M.E. and Wang, M. (1996) Effects of alendronate and taxol on PC-3ML cell bone metastases in SCID mice. Invasion and Metastasis, 16, 116–131.Google Scholar
  53. Takiuchi, H. and Ajani, JA. (1998) Uracil-tegafur in gastric carcinoma: A comprehensive review. Journal of Clinical Oncology, 16, 2877–2885.PubMedGoogle Scholar
  54. Tashiro, H., Nomura, Y. and Ohsaki, A. (1994) A double blind comparative study of tegafur (FT) and UFT (a comibantion of tegafur and uracil) in advanced breast cancer. Japanese Journal of Clinical Oncology, 24, 212–217.PubMedGoogle Scholar
  55. Theriault, R.L., Hortobagyi, G.N., Leff, R., Gluck, S., Stewart, J.F., Costello, S., Kennedy, I., Simeone, J., Seaman, J.J., Knight, R.D., Mellars, K., Heffeman, M. and Reitsman, D.J. (1999) Pamidronate reduces skeletal morbidity in women with advanced breast cancer and lytic bone lesions: A randomized, placebo-controlled trial. Journal of Clinical Oncology, 17, 846–854.PubMedGoogle Scholar
  56. Thomas, R.J., Guise, T.A., Yin, J.J., Elliott, J., Horwood, N.J., Martin, T.J. and Gillespie, M.T. (1999) Breast cancer cells interact with osteoblasts to support osteoclasts formation. Endocrinology, 140, 4451–4458.PubMedCrossRefGoogle Scholar
  57. Urwin, G.H., Percival, R.C, Harris, S., Beneton, M.N.C., Williams, J.L. and Kanis, S.A. (1985) Generalized increase in bone resorption in carcinoma of the prostate. European Journal of Urology, 57, 721–723.Google Scholar
  58. Van der Pluijm, G., Vloedgraven, H., van Beek, E., van der Wee-Pals, L., Lowik, C. and Papapoulos, S. (1996) Bisphosphonates inhibit the adhesion of breast cancer cells to bone matrices in vitro. Journal of Clinical Investigation, 98, 698–705.PubMedCrossRefGoogle Scholar
  59. Yi, B., Williams, P.J., Niewolna, M., Wang, Y. and Yoneda, T. (2002) Tumor-derived PDGFBB plays a critical role in osteosclerotic bone metastasis in an animal model of human breast cancer. Cancer Research, 62, 917–923.PubMedGoogle Scholar
  60. Yin, J.J., Selander, K., Chirgwin, J.M., Dallas, M., Grubbs, B.G., Wieser, R., Massague, J., Mundy, G.R. and Guise, T.A. (1999) TGFß signaling blockade inhibits PTH-rP secretion by breast cancer cells and bone metastasis development. Journal of Clinical Investigation, 103, 197–206.PubMedCrossRefGoogle Scholar
  61. Yoneda, T., Michigami, T., Yi, B., Williams, P.J., Niewolna, M. and Hiraga, T. (2000) Actions of bisphosphonate on bone metastasis in animal models of breast cancer. Cancer, 88, 2979–2988.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • Toshiyuki Yoneda
    • 1
  • Nobuyuki Hashimoto
    • 1
  • Toru Hiraga
    • 2
  1. 1.Endocrine Research, Department of MedicineThe University of Texas Health Science Center at San AntonioSan AntonioUSA
  2. 2.Department of BiochemistryOsaka University Graduate School of DentistryOsakaJapan

Personalised recommendations