Dynamics of Adsorption and Oxidation of Organic Molecules on Illuminated Titanium Dioxide Particles Immersed in Water

  • Miguel A. Blesa
  • Roberto J. Candal
  • Sara A. Bilmes
Part of the Surface and Colloid Science book series (SACS, volume 17)


The attempts to develop heterogeneous photocatalytic procedures to destroy organic pollutants in water(l-5) have prompted the need to understand the impact of adsorption on photo-oxidation rates. A traditional approach has been to use Langmuir-Hinshelwood (L-H) kinetic schemes to describe the data,(6-9) although in some cases the validity of this point of view has been analyzed.(10) Without any theoretical justification, L-H equation describes adequately even the time evolution of residual total organic carbon (TOC), in solutions containing a very complex mixture of pollutants and their degradation products(11-13)


Salicylic Acid Hole Trap Conduction Band Electron Complex Organic Molecule Valence Band Hole 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. F. Ollis, E. Pelizzetti, and N. Serpone, in: Photocatalysis Fundamentals and Applications, Heterogeneous Photocatalysis in the Environment: Application to Water Purification, N. Serpone and E. Pelizzetti (eds.), John Wiley Sons Inc., 1989.Google Scholar
  2. 2.
    D. Bahnemann, P. Pichat, E. Pelizzetti, and J. Cunningham, in: Aquatic and Surface Photochemistry, G. Helz, R. Zepp and D. Crosby, (eds.), CRC Press: Boca Raton, Florida, 1994.Google Scholar
  3. 3.
    M.R. Hoffman, S. T. Martin, W. Choi, and D. W. Bahnemann, Chem. Rev. 95, 69 (1995)CrossRefGoogle Scholar
  4. 4.
    M. Romero, J. Blanco, B. Sánchez, A. Vidal, S. Malato, A. Cardona, and E. García, Solar Energy, 66, 169–182(1999).CrossRefGoogle Scholar
  5. 5.
    M. A. Blesa, (ed.) in: Eliminación de Contaminantes por Fotocatálisis Heterogénea, Digital Graphic, La Plata (Argentina) Aires, 2001.Google Scholar
  6. 6.
    H. Al-Ekabi, N. Serpone, E. Pelizzetti, C. Minero, M. A. Fox, and R. B. Draper, R.B. Langmuir, 5, 250–255 (1989).CrossRefGoogle Scholar
  7. 7.
    A. Mills and S. Morris, J. Photochem. Photobiol. A Chem., 71, 75–83 (1993).CrossRefGoogle Scholar
  8. 8.
    R. W. Matthews, J. Catal., 111, 264–272 (1988).CrossRefGoogle Scholar
  9. 9.
    G. Al-Sayyed, J.-C D'Oliveira, and P. Pichat, J. Photochem. Photobiol. A Chem., 58,99–114 (1991).CrossRefGoogle Scholar
  10. 10.
    S. Tunesi and M. A. Anderson, Langmuir, 8, 487–495 (1992).CrossRefGoogle Scholar
  11. 11.
    C. Minero, S. Pelizzett, S. Malato, and J. Blanco, Solar Energy, 56, 421–428 (1996).CrossRefGoogle Scholar
  12. 12.
    S. Malato, J. Blanco, C. Richter, and M. I. Maldonado, Appl. Catal. B: Environ., 25, 31–38 (2000).CrossRefGoogle Scholar
  13. 13.
    S. Malato, J. Blanco, M.I. Moldanado, P. Fernández-Ibáñez, and A. Campos, Appl. Catal. B: Environ., 28, 163–174 (2001).CrossRefGoogle Scholar
  14. 14.
    J. Peral, and D. F. Ollis, J. Catal., 136, 554–559 (1992).CrossRefGoogle Scholar
  15. 15.
    J. M. Kesselman, N. S. Lewis, and M. R. Hoffmann, Environ. Sci. Technol., 31, 2298–2302 (1997).CrossRefGoogle Scholar
  16. 16.
    Y. V. Pleskov, Y. Y. Gurichev, in: Semiconductor Photoelectrochemistry, Plenum Pub. Corp., New York, 1986, Chapter 6, p. 179.CrossRefGoogle Scholar
  17. 17.
    M.A. Blesa, A. D. Weisz, P. J. Morando, J. A. Salfity, G. E. Magaz, and A. E. Regazzoni, Coord. Chem. Rev. 196, 31–63 (2000).CrossRefGoogle Scholar
  18. 18.
    A. D. Weisz, A. E. Regazzoni, and M. A. Blesa, Solid State Ionics, 143, 125–130 (2001).CrossRefGoogle Scholar
  19. 19.
    J. Blanco Gálvez, S. Malato Rodriguez, C. A. Estrada Gasca, E. R. Bandala, S. Gelover, and T. Leal, in: Eliminación de Contaminantes por Fotocatálisis Heterogénea, M.A. Blesa, (ed.), CYTED, Buenos Aires, 2001, Chapter 3, p.59.Google Scholar
  20. 20.
    M.A. Grela, and A. J. Colussi, J. Phys. Chem., 100, 18214–18219(1996).CrossRefGoogle Scholar
  21. 21.
    M.A. Grela, M. E. J. Coronel, A. J. Colussi, J. Phys. Chem., 100, 16940–16946 (1996).CrossRefGoogle Scholar
  22. 22.
    M.A. Grela, B. Loeb, G. Restrepo, M. G. Lagorio, and E. San Roman, in: Eliminación de Contaminantes por Fotocatálisis Heterogénea Blesa, M.A. (ed.), Digital Graphic, La Plata (Argentina) Aires, 2001, Chapter 5, pp. 103–119.Google Scholar
  23. 23.
    J. M. Kesselman, G. A. Shreve, M. R. Hoffmann, and N. S. Lewis, J. Phys. Chem. 98, 13385 (1994).Google Scholar
  24. 24.
    M. A. Aguado, M. A.Anderson, and C. G. Hill, J. Mol. Catal., 89, 165–178 (1994).CrossRefGoogle Scholar
  25. 25.
    M. A. Blesa, E. C. Baumgartner, H. A. Marinovich, and A. J. G. Maroto, Inorg. Chem. 22, 2224–2226(1983).CrossRefGoogle Scholar
  26. 26.
    M. A. Blesa, H. A. Marinovich, E. C. Baumgartner, and A. J. Maroto, Inorg. Chem. 26, 3713–3717(1987).CrossRefGoogle Scholar
  27. 27.
    L. Garcia Rodenas, A. M. Iglesias, A. D.Weisz, P. J. Morando, and M.A. Blesa, Inorg. Chem. 36, 6423–6430(1997).CrossRefGoogle Scholar
  28. 28.
    G. E. Magaz, L. García Rodenas, P. J. Morando, M.A. Blesa, Croatica Chim. Acta. 71, 917–927 (1998).Google Scholar
  29. 29.
    M. Matsuyoshi, R. T. Gettar, M.A. Blesa, A. E. Regazzoni, X th International Conference on Colloid and Surface Science (IACIS), Bristol, UK, 2000.Google Scholar
  30. 30.
    R. Rodriguez, M.A. Blesa, and A. E. Regazzoni, J. Colloid Interface Sci. 177, 122–131 (1996).CrossRefGoogle Scholar
  31. 31.
    A. E. Regazzoni, P. Mandelbaum, M. Matsuyoshi, S. Schiller, S. A. Bilmes, and M.A. Blesa, Langmuir 14 868–874 (1998).CrossRefGoogle Scholar
  32. 32.
    D. M. Blake, in: Bibliography of Work on the Photocatalytic Removal of Hazardous Compounds from Water and Air, NREL/TP-510-31319 (and previous reports), National Renewable Energy Laboratory, Golden, CO, 1997, available at Scholar
  33. 33.
    P. R. Grossi, M. Eick, D. L. Sparks, S. Goldberg, and C. C. Ainsworth, Environm. Sci. Technol. 31,321–326 (1997).CrossRefGoogle Scholar
  34. 34.
    S. H. Hug, and B. Sulzberger, Langmuir 10, 3587–3597 (1994).CrossRefGoogle Scholar
  35. 35.
    A. D. Weisz, Ph. Diss, University of Buenos Aires, 2001. Google Scholar
  36. 36.
    A. D. Weisz, L. Garcia Rodenas, P. J. Morando, A. E. Regazzoni, M.A. Blesa, Catalysis Today, accepted, 2002.Google Scholar
  37. 37.
    J. A. Bryne, and B. R. Eggins, J. Electroanal. Chem. 457, 61 (1998).CrossRefGoogle Scholar
  38. 38.
    M. M. Kosanic, J. Photochem. Photobiol. A 119, 119(1998).CrossRefGoogle Scholar
  39. 39.
    J. Bangun, and A. A. Adesina, Appl. Cat. A, 175, 221–235 (1998).CrossRefGoogle Scholar
  40. 40.
    M. E. Calvo, R. J.Candal, and S. A. Bilmes, Environ. Sci. Technol. 35, 4132 (2001).Google Scholar
  41. 41.
    A. Mills, C. E. Holland, R. H. Davies, and D. Worsley, J. Photochem. Photobiol. A: Chem. 83,257–263(1994).CrossRefGoogle Scholar
  42. 42.
    C. Figueroa, E. Sileo, P. J. Morando, and M.A. Blesa, J. Colloid Interface Sci. 225,403–410 (2000).CrossRefGoogle Scholar
  43. 43.
    H. Y. Chen, O. Zahraa, M. Bouchy, F. Thomas, and J. Y. Botterro, J. Photochem. Photobiol. A Chem., 85, 179–186(1995).CrossRefGoogle Scholar
  44. 44.
    G. Marci, A. Sclafani, V. Augugliaro, L. Palmisano, and M. Schiavello, J. Photochem. Photobiol. A: Chem., 89, 69–74 (1995).CrossRefGoogle Scholar
  45. 45.
    P. Mandelbaum, A. E. Regazzoni, M. A. Blesa, and S. A. Bilmes, J. Phys. Chem. 103, 5505 (1999).Google Scholar
  46. 46.
    P. Mandelbaum, S. A. Bilmes, S. A. Regazzoni, M A. Blesa, M.A. Solar Energy, 65, 75–80 (1999).CrossRefGoogle Scholar
  47. 47.
    A. Taghizadeh, M. F. Lawrence, L. Miller, M. A. Anderson, and N. Serpone, J. Photochem. Photobiol. A. Chem., 130, 145–156 (2000).CrossRefGoogle Scholar
  48. 48.
    See, e.g. K. Vinodgopal, U. Stafford, K. A. Gray, and P. V. Kamat, J. Phys. Chem., 98, 6797–6803 (1994).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • Miguel A. Blesa
    • 1
    • 2
  • Roberto J. Candal
    • 3
  • Sara A. Bilmes
    • 3
  1. 1.Unidad de Actividad Química, Centro Atómico ConstituyentesArgentina
  2. 2.Escuela de Posgrado, Universidad Nacional de General San MartinArgentina
  3. 3.INQUIMAE, Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires, Ciudad UniversitariaBuenos AiresArgentina

Personalised recommendations