Paleoclimate Information from Speleothems: The Present as a Guide to the Past

  • Russell S. Harmon
  • Henry P. Schwarcz
  • Mel Gascoyne
  • John W. Hess
  • Derek C. Ford


Speleothems are the secondary mineral deposits formed in caves. The most common type of speleothems are the calcium carbonate (CaCO3) stalactites, stalagmites, and flowstones which are a ubiquitous feature of caves worldwide. Variations in the18O/16O and 13C/12C ratios in calcite speleothems can provide important information about terrestrial paleoclimate, if deposition occurred under equilibrium conditions because (i) they contain a well-defined internal stratigraphy, (ii) their absolute age of deposition can be determined accurately with high precision through mass spectrometric U-series disequilibrium geochronology (Edwards et al., 1987; Li et al., 1989), (iii) variations in their internal chemical and isotopic composition are determined by the environmental conditions at the time of deposition, (iv) they may trap surface-derived dust, pollen, and organic acids as the calcite layers are sequentially deposited and (v) they tend to behave as geochemically closed systems (see e.g. Schwarcz, 1986; Gascoyne, 1992).


Isotopic Composition Seepage Water Meteoric Precipitation Drip Water Equilibrium Deposition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

5.0 References

  1. Atkinson, T. C, 1977, Diffuse flow and conduit flow in limestone terrain in the Mendip Hills, Somerset (Great Britain), J.Hydrol. 35:93–110.Google Scholar
  2. Atkinson, T. C, Harmon, R. S., Smart, P., and Waltham, A. C, Paleoclimate and geomorphic implications of 230Th/234U dates on speleomems from Britain, Nature. 272:24–28.Google Scholar
  3. Atkinson, T. C, Hess, J. W., and Harmon, R. S., 1985, Stable Isotope Variations in recharge to a karst aquifer, Yorkshire Dales: preliminary work, Ann. Soc. Geol. Begique. T108:225.Google Scholar
  4. Ayalon, A., Bar-Matthews, M., and Sass, E., 1998, Rainfall-recharge relationships within a karstic terrain in the eastern Mediterranean semi-arid region, Israel: δ18O and δD characteristics, J. Hydrol. 207:18–31.Google Scholar
  5. Baker, A., Ito, E., Smart, P., and McEwan, R. F., 1997, Elevated and variable values of 13C in speleothems in a British cave system, Chem. Geol. 36: 263–270.Google Scholar
  6. Bar-Matthews, M., Ayalon, A., Matthews, A., Sass, E., and Halicz, L, 1996, Carbon and oxygen isotope study of the active water-carbonate system in a karstic Mediterranean cave: implications for paleoclimate research in semiarid regions, Geochim. Cosmochim. Acta. 60: 337–347.Google Scholar
  7. Bar-Matthews, M., Ayalon, and Kaufman, A., 1997, Late Quaternary paleoclimate in the eastern Mediterranean region from stable isotope analysis of speleothems at Soreq Cave, Israel, Quat. Res. 47:155–168.Google Scholar
  8. Bond, J., Broecker, W. S., Johnsen, S., McManus, J., Labeyrie, L., Jouzel, J., and Bonani, R., 1993, Correlations between climate records from North Atlantic sediments and Greenland ice, Nature. 365:143–147.Google Scholar
  9. Burns, S. J., Matter, A., Frank., N, and Mangini, A., 1998, speleothem-based paleoclimate record from northern Oman, Geology. 26:499–502.Google Scholar
  10. Caballero, E., Jimenez de Cisneros, C, and Reyes, E., 1996, A stable isotope study of cave seepage waters. Appl. Geochem. 11:583–587.Google Scholar
  11. Cerling, T. E., Quade, J., Solomon, D. K., and Bowman, J. R., 1991, On the carbon isotopic composition of soil carbon dioxide, Geochim. Cosmochim. Acta. 55:3403–3405.Google Scholar
  12. Chapman, J. B., Ingraham, N. L., and Hess, J. W., 1992, Isotopic investigation of infiltration and unsaturated zone flow processes at Carlsbad Caverns, New Mexico, J. Hydrol. 133:343–363.Google Scholar
  13. Coplen, T. B., Winograd, I. J., Landwehr, J. M., and Riggs, A. C., 1994, 500,000-year stable carbon isotope record from Devils Hole, Nevada, Science. 263:361–365.Google Scholar
  14. Craig, H., 1957, Isotopic standards for carbon and oxygen and correction factors for mass-spectrometric analysis, Geochim. Cosmochim. Acta. 12:133–149.Google Scholar
  15. Craig, H., 1961, Isotopic variations in meteoric waters, Science.133:1702–1703.Google Scholar
  16. Dansgaard, W., 1964, Stable isotopes in precipitation, Tellus. 16:436–468.Google Scholar
  17. Dansgaard, W., Johnsen, S.J., Claussen, H. B., Dahl-Jensen, D., Gundestrup, N. S., Hammer, C. U., Hvidberg, C. S., Steffensen, J. P., Sveinbjornsdottir, A. E., Jousel, J., and Bond, G., 1993, Evidence for general instability of past climate from a 250-kyr ice core record, Nature. 364:218–220.Google Scholar
  18. Deines, P., Langmuir, D., and Harmon, R. S., 1974: Stable carbon isotope ratios and the existence of a gas phase in the evolution of carbonate ground waters, Geochim. Cosmochim. Acta. 26:1147–1154.Google Scholar
  19. Dorale, J. A., Gonzalez, L. A., Reagan, M. K. Pickett, D. A., Murrell., M. T., and Baker, R. G., 1992, a high-resolution record of Holocene climate change in speleothem calcite from Cold Water Cave, northeast Iowa, Science. 258:1626–1630.Google Scholar
  20. Dorale, J. A., Edwards, R.L., Ito, E., and Gonzalez, L. A., 1998, Climate and vegetation history of the midcontinent from 75 to 25 ka: a speleothem record from Crevice Cave, Missouri, USA, Science. 282:1871–1874.Google Scholar
  21. Duplessy, J. C, Labeyrie, J., Lalou, C, Nguyen, H. V., 1970, continental climatic variations between 130,000 and 90,000 years B.P., Nature. 226:631–633.Google Scholar
  22. Duplessy, J. C., Labeyrie, J., Lalou, C, Nguyen, H. V., 1971, La mesure des variations climatiques continentales application a la période comprise entre 130.000 et 90.000 ans B.P., Quat. Res. 1:162–174.Google Scholar
  23. Edwards, R. L., Chen, J. H., and Wasserburg, G. J., 1987, 238U-234U-230Th systematics and the precise measurement of time over the past 500,000 years, Earth Planet. Sci. Lett. 81:175–192.Google Scholar
  24. Emiliani, C, 1955, Pleistocene paleotemperatures, J. Geol. 63:538–378.Google Scholar
  25. Emilani, C, 1971, The last interglacial paleotemperatures and chronology, Science. 171:571–573.Google Scholar
  26. Epstein, S., Buchsbaum, R., Lowenstam, H. A., and Urey, H. C, 1951: Carbonate-water isotopic temperature scale, Bull. Geol. Soc. Amer. 62:417–426.Google Scholar
  27. Epstein, S., Buchsbaum, R., Lowenstam, H. A., and Urey, H. C, 1953: Revised carbonate-water isotopic temperature scale, Bull. Geol. Soc. Amer. 64:1315–1326.Google Scholar
  28. Fantidis, J. and Ehhalt, D. H., 1970, Variations of the carbon and oxygen isotopic composition in stalagmites and stalactites: evidence of non-equilibrium isotopic fractionation, Earth Planet. Sci. Lett. 10:136–144.Google Scholar
  29. Fornaca-Rinaldi, G., Panichi, C, and Tongiorgi, E., 1968, Some causes of the variations of the isotopic composition of carbon and oxygen in cave concretions, Earth Planet. Sci. Lett. 4: 321–324.Google Scholar
  30. Friedrich, H. and Smart, P. L., 1982, the classification of autogenic percolation waters in karst aquifers: a study in G.B. Cave, Mendip Hills, England, Proc. Bristol Univ. Speleol. Soc. 16:143–159.Google Scholar
  31. Fritz, P., Drimmie, R. J., Frape, S. K., and O’Shea, K., 1987, The isotopic composition of precipitation and groundwater in Canada, in International Symposium on the use of Isotope Techniques in Water Resources Development. International Atomic Energy Agency, Vienna, IAEA-SM299, pp.39–550.Google Scholar
  32. Frumkin, A., Ford, D. C, and Schwarcz, H. P., 1999, continental oxygen isotopic record of the last 170,000 years in Jerusalem, Quat. Res. 51:317–327.Google Scholar
  33. Galimov, E. M., Grinenko, V. A., and Gubkin, I. M., 1965, Effect of leaching under surface conditions on the isotopic composition of carbon in secondary calcite, Geochem. Int. 2:79–82.Google Scholar
  34. Gascoyne, M, 1979, Isotopic and geochronological studies of speleothems, Unpub. PhD Thesis, McMaster University, Hamilton (Ont.), Canada.Google Scholar
  35. Gascoyne, M, 1980, Trace-element partition coefficients in the calcite-water system and their paleoclimate significance in cave studies, J. Hydrol. 61:212–222.Google Scholar
  36. Gascoyne, M, 1992, Paleoclimate determination from cave calcite deposits, Quat. Sci. Rev. 11:609–632.Google Scholar
  37. Gascoyne, M., Ford, D. C, and Schwarcz, H. P., 1981, Late Pleistocene chronology and paleoclimate of Vancouver Island determined from cave deposits, Can. J. Earth Sci.18:1643–1652.Google Scholar
  38. Gascoyne, M. and Nelson, D. E., 1983, Growth mechanisms of recent speleothems from Castleguard Cave, Columbia Icefields, Alberta, Canada, inferred from a comparison of uranium-series and carbon-14 age data, Arctic Alpine Res. 15:537–542.Google Scholar
  39. Gascoyne, M., Schwarcz, H. P., and Ford, D. C, 1980, A paleotemperature record for the Mid-Wisconsin in Vancouver Island, Nature. 285:74–76.Google Scholar
  40. Glover, R. R., Pitty, A. F., and Waltham, A. C., 1977, Caves and karst of the Yorkshire Dales: Guidebook for the International Congress of Speleology, 37p.Google Scholar
  41. Goede, A., Green, D. C., and Harmon, R. S., 1986, Late Pleistocene paleotemperature record from a Tasmanian speleothem, Austral. J. Earth Sci. 33:333–342.Google Scholar
  42. Goede, A. and Hitchman, M. A., 1983, Late Quaternary climatic change: evidence from a Tasmanian speleothem, in J. C. Vogel, ed., Late Cainozoic Paleoclimates of the Southon Hemisphere, Balkema Press, Rotterdam, pp. 221–232.Google Scholar
  43. Goede, A., McDermott, F., Hawkesworth, C. J., Webb, J., and Finlayson, B., 1996, Evidence of Younger Dryas and Neoglacial cooling in a Late Quaternary paleotemperature record from a speleothem in eastern Victoria, Australia, J. Quat. Sci.11:l–7.Google Scholar
  44. Goede, A., Veeh, H. H., and Ayliffe, L. K., 1990, Late Quaternary paleotemperature records for two Tasmanian speleothems, Austral. J. Earth Sci. 37:267–278.Google Scholar
  45. Goodfriend, G. A., 1991, Holocene trends in 18O in land snail shells from the Negev Desert and their implications for changes in rainfall source areas, Quat. Res., 35:417–426.Google Scholar
  46. Harmon, R.S., 1975, Late Pleistocene paleoclimates in North America as inferred from isotopic variations in speleothems. Unpublished PhD Thesis, McMaster University, Hamilton (Ont.), Canada.Google Scholar
  47. Harmon, R. S., Atkinson, T.C., and Atkinson, J.L., 1983, The mineralogy of Castleguard Cave, Columbia Icefields, Canada, Arctic Alpine Res. 15:503–516.Google Scholar
  48. Harmon, R.S., Ford, D.C., and Schwarcz, H.P., 1977, Interglacial chronology of the Rocky and MacKenzie Mountains based upon 230Th-234U dating of calcite speleothems, Can. J. Earth Sci. 14:2543–2552.Google Scholar
  49. Harmon, R. S. and Schwarcz, H. P., 1981, Changes in 2H and 18O enrichment of meteoric water and Pleistocene glaciation, Nature. 290:125–128.Google Scholar
  50. Harmon, R. S., Schwarcz, H. P., and Ford, D. C., 1978a, Late Pleistocene paleoclimates of North America as determined from stable isotope studies of speleothems, Quat. Res. 9:54–70.Google Scholar
  51. Harmon, R. S., Schwarcz, H. P., and Ford, D. C, 1978b, Stable isotope geochemistry of speleothems and cave waters from the Flint Ridge-Mammoth Cave System: implications for terrestrial climate change during the period 230,000 to 100,000 years B.P., Jour. Geol. 86:373–384.Google Scholar
  52. Harmon, R. S., Schwarcz, H. P., Ford, D. C, and Koch, D. L., 1979a, an isotopic paleotemperature record for Late Wisconsinan time in northeast Iowa, Geology. 7:430–433.Google Scholar
  53. Harmon, R.S., Schwarcz, H.P., and O’Neil, J.R., 1979b, D/h ratios in speleothem fluid inclusions: a guide to variations in the isotopic composition of meteoric precipitation?, Earth Planet. Sci. Lett. 42:254–266.Google Scholar
  54. Hellstrom, J., McCulloch, M., and Stone, J., 1998, A detailed 31,000-year record of climate and vegetation change from the isotope geochemistry of two New Zealand speleothems, Quat. Res. 50:167–178.Google Scholar
  55. Hendy, C. H., 1971, The isotopic geochemistry of speleothems — I. the calculation of the effects of different modes of formation on the isotopic composition of speleothems and their applicability as paleoclimate indicators, Geochim. Cosmochim. Acta. 35:801–824.Google Scholar
  56. Hendy, C. H. and Wilson, A. T., 1968, Paleoclimate data from speleothems, Nature. 219:48–51.Google Scholar
  57. Hess, J.W., Atkinson, T.C., and Harmon, R.S., Unpublished Data.Google Scholar
  58. Heusser, C. J., Heusser, L. E., and Streeter, S. S., 1980, quaternary temperatures and precipitation for the northwest coast of North America, Nature. 286:702–704.Google Scholar
  59. Holmgren, K., Karlen, W., and Shaw, P. A., 1995, Paleoclimatic significance of the stable isotopic composition and petrology of a Late Pleistocene stalagmite from Botswana, Quat. Res. 43:320–328.Google Scholar
  60. Ingraham, N. L., Chapman, J. B., and Hess, J. W., 1990, Stable isotopes in cave pool systems: Carlsbad Caverns, New Mexico, U. S. A., Chem. Geol. 86:65–74.Google Scholar
  61. Labeyrie, J., Duplessy, J.C., Delibrais, G. and Letolle, R., 1967, Etude des tempereatures des climates anciens par la mesure de l’oxygen-18 du carbone-13 et du carbone-14 dans les concretions des caverenes, in Symposium on Radioactive Dating and Methods of Low Level Counting, Proceedings of the International Atomic Energy Agency, Vienna, IAEA-SM87/5, pp.153–160.Google Scholar
  62. Lauritzen, S.-E., 1995, high-resolution paleotemperature proxy record for the last interglaciation based on Norwegian speleothems, Quat. Res. 43:133–146.Google Scholar
  63. Lauritzen, S.-E., Lovlie, R., Moe, D., and Ostbye, E., 1990, Paleoclimate deduced from a multidisciplinary study of a half-million-year-old stalagmite from Rana, northern Norway, Quat. Res. 34:306–316.Google Scholar
  64. Lauritzen, S.-E. and Onac, B. P., 1999, Isotopic stratigraphy of a last interglacial stalagmite from northwestern Romania: correlation with the deep-sea record and northern-latitude speleothem, J. Cave Karst Studies. 6:22–30.Google Scholar
  65. Li, W.-X., Lundberg, J., Dickin, A. P., Ford, D. C., Schwarcz, H. P., McNutt, R., and Williams, D., 1989, High precision mass spectrometric uranium-series dating of cave deposits and implications for paleoclimate studies, Nature. 339:534–536.Google Scholar
  66. Mangarud, J., Sonstergaard., E., and Sejrup, H. P., 1979, Correlation of the Eemian and Weichselian with deep sea oxygen isotope stratigraphy, Quat. Int. 3/4: 1–4.Google Scholar
  67. Marino, B. D, McElroy, M. B., Salawitch, R. J., and Spauling, W. G., 1992, Glacial-to-interglacial variations in the carbon isotopic composition of atmospheric CO2, Nature. 357:461–466.Google Scholar
  68. Millen, T. M. and Dickey, D. N., 1987, a stable isotopic investigation of waters and speleothems in Wind Cave, South Dakota: an application of speleothem isotope paleothermometry, Nat. Speleol. Soc. Bull. 49:10–12.Google Scholar
  69. Miotke, F.-D., 1974, Carbon dioxide and the soil atmosphere, Abhand. Karst Hohl. Ser. A, 9:1–49.Google Scholar
  70. O’Neil, J. R., Clayton, R. N., and Mayeda, T. K., 1969, oxygen isotope fractionation in divalent metal carbonates, J. Chem. Phys. 51:5547–5558.Google Scholar
  71. O’Neil, J. R., Adami, L. H., and Epstein, S., 1975, Revised value for the 18O fractionation between CO2 and H2O at 25°C, J. Res. U.S. Geol. Surv. 3:623–624.Google Scholar
  72. Quade, J., Cerling, T. E., and Bowman, J. R., 1989, Systematic variations in the carbon and oxygen isotopic composition of pedogenic carbonate along elevation transects in the southern Great Basin, United States, Geol. Soc. Amer. Bull. 101:464–475.Google Scholar
  73. Salomons, W. and Mook, W. G., 1986, Isotope geochemistry of carbonates in the weathering zone, in Handbook of Environmental Isotope Geochemistry, P. Fritz and C. Fontes, eds., Elsevier, Amsterdam, 2:239–270.Google Scholar
  74. Schwarcz, H. P., 1986, Geochronology and isotope geochemistry of speleothems, in Handbook of Environmental Isotope Geochemistry, P. Fritz and C. Fontes, eds., Elsevier, Amsterdam, 2:271–303.Google Scholar
  75. Schwarcz, H. P., Harmon, R. S. Thompson, P., and Ford, D. C., 1976, Stable isotope studies of fluid inclusions in speleothems and their paleoclimate significance, Geochim. Cosmochim. Acta. 40:657–665.Google Scholar
  76. Schwarcz, H. P. and Yonge, C. J., 1983, Isotopic composition of paleowaters as inferred from speleothem and its fluid inclusions, in Paleoclimates and Paleowaters: A Collection of Environmental Isotope Studies. International Atomic Energy Agency, Vienna, IAEA-STI/PUB621, pp.115–133.Google Scholar
  77. Shackleton, N. J., Imbrie, J., and Hall, M. A., 1983, Oxygen and carbon isotope record of East Pacific core V 19-30: implications for the formation of deep water in the Late Pleistocene North Atlantic, Earth Planet. Sci. Lett. 65:233–244.Google Scholar
  78. Shackleton, N. J. and Opdyke, N. D., 1973, oxygen isotope and paleomagnetic stratigraphy of equatorial Pacific core V28-238: oxygen isotope temperatures and ice volumes on a 105 and 106 year time scale, Quat. Res., 3:39–53.Google Scholar
  79. Siegenthaler, U., 1979, Stable hydrogen and oxygen in the water cycle, in Lectures in Isotope Geology, E. Jager and J.C. Hunziker, eds., Springer, Berlin, pp. 264–273.Google Scholar
  80. Sonntag, C, Munnich, K. O., and Jacob, H., 1983, Variations of deuterium and oxygen-18 in continental precipitation and groundwater, and their causes, in Variations in the Global Water Budget, A. Street-Perrot and A. Beran, eds., D. Reidel, Dordrecht, pp 107–124.Google Scholar
  81. Stuiver, M, 1968, Oxygen-18 content of atmospheric precipitation during the last 11,000 years in the Great Lakes region, Science. 162:994–997.Google Scholar
  82. Talma, A. S. and Vogel., J. C, 1992, Late quaternary paleotemperatures derived from a speleothem from Cango Caves, Cape Province, South Africa: Quat. Res. 37:203–213.Google Scholar
  83. Talma, A. S., Vogel, J. C, and Partridge, T. C, 1974, isotopic contents of some Transvaal speleothems and their paleoclimate significance, South African J. Sci. 70:135–140.Google Scholar
  84. Taylor, H. P., 1974, The Application of Oxygen and Hydrogen Isotope Studies to Problems of Hydrothermal Alteration and Ore Deposition: Econ. Geol. 69:843–883.Google Scholar
  85. Thompson, P., Schwarcz, H. P., and Ford, D. C, 1974, Continental Pleistocene climatic variations from speleothem age and isotopic data, Science, 184:894–896.Google Scholar
  86. Thompson, P., Schwarcz, H. P., and Ford, D. C, 1976, Stable isotope geochemistry, geothermometry, and geochronology of speleothems from West Virginia, Geol. Soc. Amer. Bull. 87: 730–1738.Google Scholar
  87. Urbane, J., Pezdic, I, Bronc, I.K., and Scdoc, D., 1987, Comparison of isotopic composition of different forms of calcite precipitated from fresh water, Proceedings International Symposium on the Use of Isotope Techniques in Water Resources Development, International Atomic Energy Agency, Vienna, IAEA-SM-131P, pp. 783–787.Google Scholar
  88. Urey, H. C, 1947, The thermodynamic properties of isotopic substances, J. Chem. Soc. (London), 562–581.Google Scholar
  89. Urey, H. C., Lowenstam, H. A., Epstein, S., and McKinney, C. R., 1951, measurement of paleotemperatures and temperatures of the Upper Cretaceous of England, Denmark, and the southeastern United States, Bull. Geol. Soc. Amer. 62:399–416.Google Scholar
  90. Wigley, T. M. L, Plummer, L. N., and Pearson, F. J., 1979, mass transfer and carbon isotope evolution in natural water systems, Geochim. Cosmochim. Acta, 42:1117–1139.Google Scholar
  91. Winograd, I. J., Coplen, T. B., Landwehr, J. M, Riggs, A. C, Ludwig, K. R., Szabo, B. J., Kolesar, P. T., and Revez, K. M., 1992, Continuous 500,000-year climate record from vein calcite in Devils Hole, Nevada, Science. 258:255–260.Google Scholar
  92. Yonge, C. J., Ford, D. C, Gray, J., and Schwarz, H. P., 1985, stable isotope studies of cave seepage water, Chem. Geol. 58:97–105.Google Scholar
  93. Yurtsever, M, and Gat, J. R., 1981, Stable isotope hydrology: deuterium and oxygen-18 in the water cycle: in Atmospheric Waters, International Atomic Energy Agency, Vienna, IAEA TRS-210, pp. 103–142.Google Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • Russell S. Harmon
    • 1
  • Henry P. Schwarcz
    • 2
  • Mel Gascoyne
    • 3
  • John W. Hess
    • 4
  • Derek C. Ford
    • 5
  1. 1.Army Research Office/Army Research LaboratoryResearch Triangle ParkUSA
  2. 2.School of Geography and Geology, McMaster UniversityHamiltonCanada
  3. 3.Gascoyne Geoprojects Inc.PinawaCanada
  4. 4.Geological Society of AmericaBoulderUSA
  5. 5.School of Geography and Geology, McMaster University HamiltonOntarioCanada

Personalised recommendations