Advertisement

Dyslexia and Visual Spatial Talents: Are they Connected?

Chapter
Part of the Neuropsychology and Cognition book series (NPCO, volume 25)

Abstract

Although it has been claimed that with dyslexia comes visual-spatial gifts, the evidence relevant to this claim is mixed. Whereas individuals with visual-spatial gifts have a disproportionate incidence of reading deficits, including dyslexia, individuals with dyslexia do not consistently show superior visual-spatial abilities. Depending on the task and the study, individuals with reading disorders have been shown to perform at below average, average, and superior levels. The inconsistency in findings is likely due to the use of very different measures of visual-spatial ability. Recent studies from our lab suggest that when global (holistic) visual-spatial tasks are used, individuals with dyslexia excel. Future research is called for to test the hypothesis that dyslexia is associated with talent in global visual-spatial ability.

Keywords

Mental Rotation Visual Memory Reading Disability Learn Disability Developmental Dyslexia 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aaron, P. G., & Guillemarde, J.-C. (1993). Artists as individuals with dyslexia. In Dale M. Willows, Richard S. Kruk, & E. Corcos (Eds.), Visual processes in reading and reading disabilities (pp. 393–415). Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
  2. Aaron, P. G., Phillips, S., & Larsen, S. (1988). Specific reading disabilities in historical men of eminence. Journal of Learning Disabilities, 21(9), 523–538PubMedCrossRefGoogle Scholar
  3. Adelman, H. (1988). Reaction to Aaron, Phillips, and Larsen. Journal of Learning Disabilities, 21(9), 538, 545.CrossRefGoogle Scholar
  4. Bannatyne, A. (1971). Language, reading and learning disabilities: Psychology, neuropsychology, diagnosis and remediation. Springfield, IL: Charles C. Thomas.Google Scholar
  5. Beaton, A. A. (1997). The relation of planum temporale asymmetry and morphology of the corpus callosum to handedness, gender, and dyslexia: A review of the evidence. Brain and Language, 60, 225–322.CrossRefGoogle Scholar
  6. Benton, A. L. (1984). Dyslexia and spatial thinking. Annals of Dyslexia, 34, 69–85.CrossRefGoogle Scholar
  7. Bloom, B. S. (1985). Developing talent in young people. New York: Ballantine.Google Scholar
  8. Boehm, G., Sherman, G., Hoplight, B., Hyde, L., Waters, N., Bradway, D., Galaburda, A., & Denenberg, V. (1996). Learning and memory in the autoimmune BXSB mouse: Effects of neocortical ectopias and environmental enrichment. Brain Research, 726, 11–22.PubMedCrossRefGoogle Scholar
  9. Carroll, F.B. (1993). Human cognitive abilities. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
  10. Chase, C. (1996). A visual deficit model of developmental dyslexia. In C. Chase, G. Rosen, & G. Sherman (Eds.), Developmental dyslexia: Neural, cognitive, and genetic mechanisms. Baltimore, MD: York Press.Google Scholar
  11. Colangelo, N., Assouline, S. G., Kerr, B., Huesman, R., & Johnson, D. (1993). Mechanical inventiveness: A three phase study. In G. Bock & K. Ackrill (Eds.), The origins and development of high ability (pp. 160–174). New York: Wiley.Google Scholar
  12. Davis, R. D., & Braun, E. M., (1997). The gift of dyslexia: Why some of the smartest people can’t read and how they can learn. New York: Perigee Books, Berkley Publishing Group.Google Scholar
  13. Denenberg, V. H., Sherman, G. F., Schrott, L. M., Rosen, G. D., & Galaburda, A M. (1991) Spatial learning, discrimination learning, paw preference and neocortical ectopias in two autoimmune strains of mice. Brain Research, 562, 98–104.PubMedCrossRefGoogle Scholar
  14. Ekstrom, R., French, J., Harman, H.,with Dermen, D. (1976). Kit of factor-referenced cognitive tests. Princeton, NJ: Educational Testing Service.Google Scholar
  15. Galaburda, A. M., Corsiglia, J., Rosen, G. D., & Sherman, G. F. (1987). Planum temporale asymmetry, reappraisal since Geschwind and Levitsky. Neuropsychologia, 25, 853–868.CrossRefGoogle Scholar
  16. Galaburda, A., Sherman, G., Rosen, G., Aboitiz, F., & Geschwind, N. (1985). Developmental dyslexia: Four consecutive cases with cortical anomalies. Annals of Neurology, 18, 222–233.PubMedCrossRefGoogle Scholar
  17. Geschwind, N. (1984). The biology of cerebral dominance: Implications for cognition. Cognition, 17, 193–208.PubMedCrossRefGoogle Scholar
  18. Geschwind, N. (1982). Why Orton was right. Annals of Dyslexia, 32, 13–30.CrossRefGoogle Scholar
  19. Geschwind, N., & Galaburda, A. M. (1987). Cerebral lateralization. Cambridge, MA: MIT Press.Google Scholar
  20. Gordon, H. W. (1983). The learning disabled are cognitively right. Topics in Learning & Learning Disabilities (April), 29–39.Google Scholar
  21. Gross, M. U. M. (1993). Exceptionally gifted children. New York: Routledge.CrossRefGoogle Scholar
  22. Guilford, J.P., & Zimmerman, W.S. (1953). Guilford-Zimmerman Aptitude Survey. Orange, CA: Sheriden Psychological Services.Google Scholar
  23. Hassler, M., (1990). Functional cerebral asymmetric and cognitive abilities in musicians, painters, and controls. Brain and Cognition, 13, 1–17.PubMedCrossRefGoogle Scholar
  24. Harness, B. Z., Epstein, R., & Gordon, H. W. (1984). Cognitive profile of children referred to a clinic for reading disabilities. Journal of Learning Disabilities, 17(6), 346–352.PubMedCrossRefGoogle Scholar
  25. Hermelin, B., & O’Connor, N. (1986). Spatial representations in mathematically and in artistically gifted children. British Journal of Educational Psychology, 56, 150–157.PubMedCrossRefGoogle Scholar
  26. Hooper, S. R., & Willis, W. G. (1989). Learning disability subtyping: Neuropsychological foundations, conceptual models, and issues in clinical differentiation. New York: Springer-Verlag.Google Scholar
  27. Humphreys, P., Kaufmann, W., & Galaburda, A. (1990). Developmental dyslexia in women: Neuropathological findings in three patients. Annals of Neurology, 28(6), 727–738.PubMedCrossRefGoogle Scholar
  28. Johnston, J. R., & Elis Weismer, S. (1983). Mental rotation abilities in language-disordered children. Journal of Speech and Hearing Research, 26, 397–403.PubMedGoogle Scholar
  29. Kaufman, A.S. (1979) WISC-R research: Implications for interpretation. School Psychology Review,8(1), 5–27.Google Scholar
  30. Kaufman, A., & Kaufman, N. (1990). Kaufman Brief Intelligence Test. Circle Pines, MN: American Guidance Service.Google Scholar
  31. Koenig, O., Kosslyn, S. M., & Wolff, P. (1991). Mental imagery and dyslexia: A deficit in processing multipart visual objects? Brain and Language, 41, 381–394.PubMedCrossRefGoogle Scholar
  32. Kosslyn, S. M., Maljkovic, V., Hamilton, S. E., & Thompson, W. L. (1995). Two types of image generation: Evidence for left and right hemisphere processes. Neuropsychologia, 33(11), 1485–1510.PubMedCrossRefGoogle Scholar
  33. Krutetskii, V. A. (1976). The psychology of mathematical abilities in school children. New York: Free Press.Google Scholar
  34. LaFrance, E. B. (1997). The gifted/dyslexic child: Characterizing and addressing strengths and weaknesses. Annals of Dyslexia, 47, 163–182.CrossRefGoogle Scholar
  35. Libeman, I.Y., Mann, V.A., Shankweiler, D. & Werfelman, M. (1982).Children’s memory for recurring linguistic and nonlinguistic material in relation to reading ability. Cortex, 18, 367–375.Google Scholar
  36. Linn, M. C., & Petersen, A. C. (1985). Emergence and characterization of sex differences in spatial ability: A meta-analysis. Child Development, 56, 1479–1498.PubMedCrossRefGoogle Scholar
  37. Martino, G., & Winner, E. (1995). Talents and disorders: The relationship between sex, handedness, and college major. Brain and Cognition, 29, 66–84.PubMedCrossRefGoogle Scholar
  38. Morris, R. D., Stuebing, K. K., Fletcher, J. M., Shaywitz, S. E., Lyon, G. R., Shankweiler, D. P., Katz, L., Francis, D. J., & Shaywitz, B. A. (1998). Subtypes of reading disability: Coherent variability around a phonological core. Journal of Educational Psychology, 90, 1–27.CrossRefGoogle Scholar
  39. Mottron, L., & Belleville, S. (1993). A study of perceptual analysis in a high-level autistic subject with exceptional graphic abilities. Brain and Cognition, 23, 279–309.PubMedCrossRefGoogle Scholar
  40. Naidoo, S. (1972). Specific dyslexia. New York: Wiley & Sons.Google Scholar
  41. Orton, S. T. (1925). “Word blindness” in school children. Archives of Neurology and Psychiatry, 14, 581–613.CrossRefGoogle Scholar
  42. Osterrieth, P.A. (1944). Le test de copie d’une figure complexe. Archives de Psychologie. 30, 206–356.Google Scholar
  43. Rey, A. (1941). L’examen psychologique dans le cas d’encephalopathie traumatique. Archives de Psychologie, 28, 286–340.Google Scholar
  44. Rourke, B. P. & Finlayson, M. A. J. (1978). Neuropsychological significance of variations in patterns of academic performance: Verbal and visual spatial abilities. Journal of Abnormal Child Psychology, 6(1), 121–133.PubMedCrossRefGoogle Scholar
  45. Rudel, R. G., & Denckla, M. B. (1976). Relationship of IQ and reading score to visual, spatial, and temporal matching tasks. Journal of Learning Disabilities, 9(3), 42–51.CrossRefGoogle Scholar
  46. Rugel, R. (1974). WISC subtest scores of disabled readers. Journal of Learning Disabilities, 7(1), 46–65.CrossRefGoogle Scholar
  47. Schacter, D. L. (1992). Understanding implicit memory: A cognitive neuroscience approach. American Psychologist, 47(4), 559–569.PubMedCrossRefGoogle Scholar
  48. Schacter, D. L., Cooper, L. A., & Delaney, S. M. (1990). Implicit memory for unfamiliar objects depends on access to structural descriptions. Journal of Experimental Psychology: General, 119, 3–19.CrossRefGoogle Scholar
  49. Siegel, L. S., & Ryan, E. B. (1989). Subtypes of developmental dyslexia: The influence of definitional variables. Reading and Writing: An Interdisciplinary Journal, 2, 257–287.CrossRefGoogle Scholar
  50. Silverman, L.K. (2002) Upside-down brilliance: The visual spatial learner. Denver, CO: DeLeon.Google Scholar
  51. Sinatra, R. (1988). Styles of thinking and literacy proficiency for males disabled in print acquisition. Reading Psychology: An International Quarterly, 9, 33–50.CrossRefGoogle Scholar
  52. Smith, M. D., Coleman, J., Dokecki, P. R., & Davis, E. E. (1977). WISC-R scores of learning disabled children. Journal of Learning Disabilities, 10(7), 437–443.CrossRefGoogle Scholar
  53. Sowell, T., (1997). Late-talking children. New York: Basic Books.Google Scholar
  54. Springer, S. P., & Deutsch, G. (1989). Left brain, right brain. (3rd ed.). San Francisco: W. H. Freeman.Google Scholar
  55. Springer, S. P., & Deutsch, G. (1997). Left brain, right brain: Perspectives from cognitive neuroscience. (5th ed.). San Francisco: W. H. Freeman.Google Scholar
  56. Swanson, H. L. (1984). Semantic and visual memory codes in learning disabled readers. Journal of Experimental Child Psychology, 37, 124–140.PubMedCrossRefGoogle Scholar
  57. Swanson, H. L., Mink, J., & Bocian, K.M., (1999). Cognitive processing deficits in poor readers with symptoms of reading disabilities and ADHD: More alike than different? Journal of Educational Psychology, 91(2), 321–333.CrossRefGoogle Scholar
  58. Thurstone, L. L. & Jeffrey, T. (1956), Flags Test of Spatial Thinking. Education Industry Service.Google Scholar
  59. Vandenberg, S., & Kuse, A.(1978). Mental rotation: A group test of three dimensional spatial visualization. Perceptual Motor Skills, 47, 599–604.CrossRefGoogle Scholar
  60. von Károlyi, C. (2001). Visual spatial strength in dyslexia: Rapid discrimination of impossible figures.Journal of Learning Disabilities. 34(4), 380–391.CrossRefGoogle Scholar
  61. von Károlyi, C., Winner, E. Gray, W. & Sherman, G. (in press). Dyslexia linked to talent: Global visual spatial ability. Brain and Language.Google Scholar
  62. Waters, N., Sherman, G.F., Galaburda, A.M., & Denenberg, V.H. (1997). Effects of cortical ectopias on spatial delayed matching-to-sample performance in BXSB mice. Behavioral Brain Research, 84, 23–29.CrossRefGoogle Scholar
  63. Wechsler, D. (1949). Wechsler Intelligence Scale for Children (Manual). New York: The Psychological Corporation.Google Scholar
  64. Wechsler, D. (1974). Wechsler Intelligence Scale for Children-Revised.New York: The Psychological Corporation.Google Scholar
  65. Wechsler, D. (1991). Wechsler Intelligence Scale for Children: Third edition manual. San Antonio, TX: The Psychological Corporation.Google Scholar
  66. West, T. G. (1991). In the mind’s eye: Visual thinkers, gifted people with learning difficulties, computer images, and the ironies of creativity. Buffalo, NY: Prometheus.Google Scholar
  67. Winner, E. (1996). Gifted children: Myths and realities. New York: Basic Books.Google Scholar
  68. Winner, E. & Casey, M.B. (1993) Cognitive profiles of artists. In G. Cupchik & J. Lazlo (Eds.), Emerging visions: Contemporary approaches to the aesthetic process (pp. 154–170). New York: Cambridge University Press.Google Scholar
  69. Winner, E., Casey, M., DaSilva, D., & Hayes, R. (1991). Spatial abilities and reading deficits in visual art students. Empirical Studies of the Arts, 9(1), 51–63.CrossRefGoogle Scholar
  70. Winner, E., & von Károlyi, C. (1998) Artistry and aphasia. In M. T. Sarno (Ed.), Acquired aphasia. (3rd. Edition). New York: Academic Press.Google Scholar
  71. Winner, E., von Károlyi, C., Malinsky, D., French, L., Seliger, C., Ross, E., & Weber, C. (2001). Dyslexia and visual-spatial talents: Compensation vs. deficit model. Brain and Language, 76, 81–110.PubMedCrossRefGoogle Scholar
  72. Wolf, M. & Bowers, P. (2000). The question of naming-speed deficits in developmental reading disability: An introduction to the Double-Deficit Hypothesis. Journal of Learning Disabilities, 33, 322–324.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  1. 1.University of Wisconsin-Eau ClaireUSA
  2. 2.Boston College and Harvard Project ZeroUSA

Personalised recommendations