Vortices In Josephson Arrays Interacting With Nonclassical Microwaves In A Dissipative Environment

  • A. Konstadopoulou
  • J. M. Hollingworth
  • A. Vourdas
  • M. Everitt
  • T. D. Clark
  • J. F. Ralph

Abstract

Vortices circulating in a ring made from a Josephson array in the insulating phase are studied. The ring contains a “dual Josephson junction” through which the vortices tunnel. External nonclassical microwaves are coupled to the device. The time evolution of this two-mode fully quantum mechanical system is studied, taking into account the dissipation in the system. The effect of the quantum statistics of the photons on the quantum statistics of the vortices is discussed. Entropic calculations quantify the entanglement between the two systems. Quantum phenomena in the system are also studied through Wigner functions. After a certain time (which depends on the dissipation parameters) these quantum phenomena are destroyed due to dissipation.

Keywords

Josephson array Vortices Entanglement Dissipation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    G. Schon, and A. D. Zaikin, (1990). Phys. Rep. 198, 237.ADSCrossRefGoogle Scholar
  2. [2]
    A. van Oudenaarden, and J. E. Mooij, (1996). Phys. Rev. Lett. 76, 4947.ADSCrossRefGoogle Scholar
  3. [3]
    T. P. Spiller, et al. (1990). Nuovo Cim. 105B, 43.ADSCrossRefGoogle Scholar
  4. [4]
    A. Vourdas, (1999). Eurphys. Lett. 48, 201.ADSCrossRefGoogle Scholar
  5. [5]
    A. Vourdas, and T. P. Spiller, (1997). Z. Lett. B102, 43.Google Scholar
  6. [6]
    A. Konstadopoulou, et al. (2001). IEE Proc. Science, Meas. Tech. 148, 229.CrossRefGoogle Scholar
  7. [71.
    Y. Makhlin, G. Schon, and A. Shnirman, (1999). Nature 398, 305.ADSCrossRefGoogle Scholar
  8. [81.
    T. P. Orlando, and K. A. Delin, (1991). Phys. Rev. B 43, 8717.ADSGoogle Scholar
  9. [91.
    A. J. Leggett. et al. (1987). Rev. Mod. Phys. 1, 59.Google Scholar
  10. [10]
    G. Lindbland, (1973). Commun. Math. Phys. 33, 305.ADSCrossRefGoogle Scholar
  11. [Ill.
    N. J. Cerf. and C. Adami, (1998). This is a test. Physica D 120, 62.MathSciNetADSGoogle Scholar
  12. [12).
    S. Chountasis, and A. Vourdas, (1998). Phys. Rev., A 58, 1794.MathSciNetADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • A. Konstadopoulou
    • 1
  • J. M. Hollingworth
    • 1
  • A. Vourdas
    • 1
  • M. Everitt
    • 2
  • T. D. Clark
    • 2
  • J. F. Ralph
    • 3
  1. 1.Department of ComputingUniversity of BradfordBradfordUK
  2. 2.School of Engineering and Information TechnologyUniversity of SussexFalmerUK
  3. 3.Department of Electrical Engineering and ElectronicsUniversity of LiverpoolLiverpoolUK

Personalised recommendations