Textural Quality Assessment for Fresh Fruits and Vegetables

  • Judith A. Abbott
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 542)

Abstract

Texture is critical to the acceptability of fruits and vegetables, both fresh and cooked. This article focuses primarily on texture measurement of fresh (raw, uncooked) fruits and vegetables. It is important to remember that fruits and vegetables continue to metabolize, synthesize, and catabolize after harvest. In order to study the chemical and physiological mechanisms of textural changes during the development and senescence of fruits and vegetables, it is critical to be able to measure the texture. Although the term is widely used, texture is not a single, well-defined attribute. It is a collective term that encompasses the structural and mechanical properties of a food and their sensory perception in the hand or in the mouth.

Keywords

Cellulose Brittle Cellulase Glaucoma Hemicellulose 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abbott, J. A., Affeldt, H. A. and Liljedahl, L. A., 1992, Firmness measurement of stored ‘Delicious’ apples by sensory methods, Magness-Taylor, and sonic transmission. J. Am. Soc. Hort. Sci., 117:590–595.Google Scholar
  2. Abbott, J. A., Bachman, G. S., Childers, N. F., Fitzgerald, J. V., and Matusik, F. J., 1968, Sonic techniques for measuring texture of fruits and vegetables, Food Technol., 22(5): 101–112.Google Scholar
  3. Abbott, J. A. and Lu, R., 1996, Anisotropic mechanical properties of apples. Trans. Am. Soc. Agr. Eng., 39:1451–1459.Google Scholar
  4. Abbott, J. A., Lu, R., Upchurch, B. L., and Stroshine, R. L., 1997. Technologies for nondestructive quality evaluation of fruits and vegetables. Hort. Rev., 20:1–120.Google Scholar
  5. Abbott, J. A., Watada, A. E., and Massie, D. R., 1976, Effe-gi, Magness-Taylor, and Instron fruit pressure testing devices for apples, peaches, and nectarines, J. Am. Soc. Hort. Sci., 101: 698–700.Google Scholar
  6. Abbott, J. A., Watada, A. E., and Massie, D. R., 1984, Sensory and instrument measurement of apple texture. J. Am. Soc. Hort. Sci., 109:221–228.Google Scholar
  7. Affeldt, H. A., Jr. and Abbott, J. A., 1992, Agricultural commodity condition measurement, U.S. Patent 5, 152, 401.Google Scholar
  8. Ahrens, M. J., and Huber, D. J., 1990, Physiology and firmness determination of ripening tomato fruit, Physiol. Plant., 78:8–14.CrossRefGoogle Scholar
  9. Armstrong, P., Zapp, H. R., and Brown, G. K., 1990, Impulsive excitation of acoustic vibrations in apples for firmness determination, Trans. Am. Soc. Agric. Eng., 33:1353–1359.Google Scholar
  10. 1.
    ASAE, 2000, Compression test of food materials of convex shape, Am. Soc. Agric. Eng., Standard 368.4. Am. Soc. Agric. Eng., St. Joseph, MI.Google Scholar
  11. Bajema, R. W., and Hyde, G. M., 1998, Instrumented pendulum for impact characterization of whole fruit and vegetable specimens, Trans. Am. Soc. Agric. Eng., 41:1399–1405.Google Scholar
  12. Blanpied, G. D., Bramlage, W. J., Dewey, D. H., LaBelle, R. L., Massey, L. M., Mattus, Jr, G. E., Stiles, W. C. and Watada, A. E., 1978, A standardized method for collecting apple pressure test data, N. Y. Food and Life Sciences Bul., 74.Google Scholar
  13. Bourne, M. C., 1968, Texture profile of ripening pears, J. Food Sci. 33:223–226.CrossRefGoogle Scholar
  14. Bourne, M.C., 1974, Comparison of results from the use of the Magness-Taylor pressure tip in hand-and machine-operation, J. Texture Studies, 5:105–108.CrossRefGoogle Scholar
  15. Bourne, M. C., 1980, Texture evaluation of horticultural crops, HortScience, 15:51–57.Google Scholar
  16. Bourne, M. C., 1982, Food Texture and Viscosity; Concept and Measurement. Academic Press, New York.Google Scholar
  17. Breene, W. M., Jeon, I. J.,and Bernard, S. N., 1974, Observations on texture measurement of raw cucumbers with the fruit pressure tester, J. Texture Studies, 5:317–327.CrossRefGoogle Scholar
  18. Brusewitz, G. H., McCollum, T.G., Zhang, X., 1991, Impact bruise resistance of peaches, Trans. Am. Soc. Agric. Eng. 34:962–965.Google Scholar
  19. Conway, W. S., Sams, C. E., Wang, C. Y., and Abbott, J. A., 1994, Additive effects of postharvest calcium and heat treatment on reducing decay and maintaining quality in apples, J. Am. Soc. Hort. Sci., 119:49–53.Google Scholar
  20. de Belie, N., Tu, K., Jancsok, P., and de Baerdemaeker, J, 1999, Preliminary study on the influence of turgor pressure on body reflectance of red laser light as a ripeness indicator for apples, Postharv. Biol. Technol., 16:279–284.CrossRefGoogle Scholar
  21. de Belie, N., Schotte, S., Coucke, P., and de Baerdemaeker, J., 2000, Development of an automated monitoring device to quantify changes in firmness of apples during storage, Postharv. Biol. Technol., 18:1–8.CrossRefGoogle Scholar
  22. Delwiche, M. J., McDonald, T., and Bowers, S. V., 1987, Determination of peach firmness by analysis of impact force, Trans. Agric. Soc. Agr. Eng., 30:249–254.Google Scholar
  23. Delwiche, M. J., Singh, N., Arevalo, H., and Mehlschau, J., 1991, A second generation fruit firmness sorter, Am. Soc. Agr. Eng., Paper 91–6042.Google Scholar
  24. Delwiche, M. J., Tang, S., and Mehlschau, J. J., 1989, An impact force response fruit firmness sorter, Trans. Am. Soc. Agric. Eng., 32:321–326.Google Scholar
  25. Dey, P. M., and Campillo, E. del, 1984, Biochemistry of the multiple forms of glycosidases in plants, Advances in Enzymology, Vol 56:141–249.Google Scholar
  26. Diehl, K. C., and Hamann, D.D., 1979, Relationships between sensory profile parameters and fundamental mechanical parameters for raw potatoes, melons and apples, J. Texture Studies, 10:401–420.CrossRefGoogle Scholar
  27. El Assi, N. E., Huber, D. J., and Brecht, J. K., 1997, Irradiation-induced changes in tomato fruit and pericarp firmness, electrolyte efflux, and cell wall enzyme activity as influened by ripening stage, J. Am. Soc. Hort. Sci., 122:100–106.Google Scholar
  28. Errington, N., Mitchell, J. R., and Tucker, G. A., 1997, Changes in the force relaxation and compression responses of tomatoes duringripening: the effect of continual testing and polygalacturonase activity, Postharv. Biol. Technol., 11:141–147.CrossRefGoogle Scholar
  29. Fan, S., Prussia, S. E, and Hung, Y. C., 1994, Evaluating the UGA laser-puff food firmness detector, Trans. Am. Soc. Agric. Eng., Paper 94–6540.Google Scholar
  30. Floros, J. D., Ekanayake, A., Abide, G. P., Nelson, P. E., 1992, Optimization of a diced tomato calcification process, J. Food Sci., 57:1144–1148.CrossRefGoogle Scholar
  31. Friedman, H.H., Whitney, J. E., and Szczesniak, A. S., 1963, The texturometer—a new instrument for objective texture measurement, J. Food Sci., 28:390–396.CrossRefGoogle Scholar
  32. Glenn, G. M., and Poovaiah, B. W., 1990, Calcium-mediated postharvest changes in texture and cell wall structure and composition in ‘Golden Delicious’ apples, J. Am. Soc. Hort. Sci., 115: 962–968.Google Scholar
  33. Haller, M. H., 1941, Fruit pressure testers and their practical applications. USDA Circular 627, Washington, D.C.Google Scholar
  34. Hamson, A.R., 1952, Measuring firmness of tomatoes in a breeding program, Proc. Am. Soc. Hort. Sci., 60:425–433.Google Scholar
  35. Harker, F. R., and Hallett, I. C., 1992, Physiological changes associated with development of mealiness of apple fruit during cool storage, HortScience 27(12) p. 1291–1294.Google Scholar
  36. Harker, F. R. and Hallett, I. C., 1994, Physiological and mechanical properties of kiwifruit tissue associated with texture change during cold storage, J. Am. Soc. Hort. Sci., 119: 987–993.Google Scholar
  37. Harker, F. R., Maindonald, J. H., and Jackson, P. J., 1996, Penetrometer measurement of apple and kiwifruit firmness: operator and instrument differences. J. Am. Soc. Hort. Sci., 121: 927–936.Google Scholar
  38. Harker, F. R., Redgwell, R. J., Hallett, I. C., and Murray, S. H., 1997a, Texture of fresh fruit, Hort. Rev., 20:121–224.Google Scholar
  39. Harker, F. R., Stec, M. G. H., Hallett, I. C., and Bennett, C. L., 1997b, Texture of parenchymatous plant tissue: a comparison between tensile and other instrumental and sensory measurements of tissue strength and juiciness, Postharv. Biol. Technol., 11:63–72.CrossRefGoogle Scholar
  40. Harker, F. R. and Sutherland, P. W., 1993, Physiological changes associated with fruit ripening and the development of mealy texture during storage of nectarines, Postharv. Biol. Technol., 2:269–277.CrossRefGoogle Scholar
  41. Holt, C. B., 1970, Measurement of tomato firmness with a Universal testing machine, J. Texture Studies 1:491–501.CrossRefGoogle Scholar
  42. Hopkirk, G., Maindonald, J. H., and White, A., 1996, Comparison of four new devices for measuring kiwifruit firmness, N. Z. J. Crop Hort. Sci., 24:273–286.CrossRefGoogle Scholar
  43. Huber, D. J., 1992, The inactivation of pectin depolymerase associated with isolated tomato fruit cell wall: implications for the analysis of pectin solubility and molecular weight, Physiol. Plant., 86:25–32.CrossRefGoogle Scholar
  44. Hung, Y. C., McWatters, K. H., and Prussia, S. E., 1998, Sorting performance of a nondestructive laser air-puff firmness detector, Appl. Eng. Agr., 14(5):513–516.Google Scholar
  45. Jackman, R. L., Marangoni, A. G., and Stanley, D. W., 1990, Measurement of tomato fruit firmness, HortScience 25(7):781–783.Google Scholar
  46. Khan, A. A., and Vincent, J. F. V., 1993, Compressive stiffness and fracture properties of apple and potato parenchyma, J. Texture Studies., 24:423–435.CrossRefGoogle Scholar
  47. Kojima, K., Sakurai, N., Kuraishi, S., Yamamoto, R., and Nevins, D. J., 1991, Novel technique for measuring tissue firmness within tomato (Lycopersicon esculentum Mill.) fruit, Plant Physiol. 96:545–550.CrossRefGoogle Scholar
  48. Kramer, A., Burkhardt, G. J., and Rogers, H. P., 1951, The shear-press, a device for measuring food quality, Canner, 112:34–36, 40.Google Scholar
  49. Lapsley, K. G., Escher, F. E., and Hoehn, E., 1992, The cellular structure of selected apple varieties, Food Struct, 11(4):339–349.Google Scholar
  50. Lehman-Salada, L., 1996, Instrument and operator effects on apple firmness readings, HortScience 31:994–997.Google Scholar
  51. Lin, T. T., and Pitt, R. E., 1986, Rheology of apple and potato tissue as affected by cell turgor pressure, J. Texture Stud., 17:291–313.CrossRefGoogle Scholar
  52. Lipton, W. J., 1990, Postharvest biology of fresh asparagus, Hort. Rev., 12:69–155.Google Scholar
  53. Magness, J. R., and Taylor, G. F., 1925, An improved type of pressure tester for the determination of fruit maturity, USDA Cir. 350.Google Scholar
  54. Makus, D. J. and Morris, J. R., 1993, A comparison of fruit of highbush and rabbiteye blueberry cultivars, J. Food Quality, 16:417–428. firmness (as shear)CrossRefGoogle Scholar
  55. McGlone, V. A., Schaare, P. N., 1993, The application of impact response analysis in the New Zealand fruit industry, Trans. Am. Soc. Agr. Eng., 93–6537.Google Scholar
  56. Muramatsu, N., Sakurai, N., Wada, N., Yamamoto, R., Tanaka, K., Asakura, T., Ishikawa-Takano, Y., and Nevins, D. J., 2000, Remote sensing of fruit textural changes with a laser doppler vibrometer, J. Am. Soc. Hort. Sci., 125:120–127.Google Scholar
  57. Nakhasi, S., Schlimme, D., and Solomos. T., 1991, Storage potential of tomatoes harvested at the breaker stage using modified atmosphere packaging, J. Food Sci., 56:55–59.CrossRefGoogle Scholar
  58. Okimoto, M. C., 1948, Anatomy and histology of the pineapple inflorescence and fruit. Bot. Gaz., 110:217–231.CrossRefGoogle Scholar
  59. Patel, N., McGlone, V. A., Schaare, P. N., and Hall, H., 1993, “BerryBounce”: a technique for the rapid and nondestructive measurement of firmness in small fruit, Acta Hort., 352:189–198.Google Scholar
  60. Peleg, K., 1989, Method and apparatus for automatically inspecting and classifying different objects, U.S. Patent 4, 884, 696.Google Scholar
  61. Peleg, K., Ben-Hanan, U., and Hinga, S., 1990, Classification of avocado by firmness and maturity, J Texture Studies, 21:123–139.CrossRefGoogle Scholar
  62. Price, J. L., and Floros, J. D., 1993, Quality decline in minimally processed fruits and vegetables, Dev. Food Sci., 32:405–427.Google Scholar
  63. Prussia, S. E., Astleford, J. J., Hung, Y-C., and Hewlett, R., 1994, Non-destructive firmness measuring device, U.S. Patent 5, 372, 030.Google Scholar
  64. Rohrbach, R. P., 1981, Sorting blueberries to improve fresh market shelf life, Trans. Am. Soc. Agric. Eng. Paper 81–1501.Google Scholar
  65. Rosen, J. C., and Kader, A. A., 1989, Postharvest physiology and quality maintenance of sliced pear and strawberry fruits, J. Food Sci., 54:656–659.CrossRefGoogle Scholar
  66. Sakurai, N., and Nevins, D. J., 1992, Evaluation of stress-relaxation in fruit tissue, HortTechnology, 2:398–402.Google Scholar
  67. Schoorl, D., and Holt, D. J., 1983, A practical method for tensile testing of apple tissue, J. Texture Studies, 14:155–164.CrossRefGoogle Scholar
  68. Schotte, S., deBelie, N., and de Baerdemaeker, J., 1999, Acoustic impulse-response technique for evaulation and modelling of firmness of tomato fruit, Postharv. Biol. Technol., 17:105–115.CrossRefGoogle Scholar
  69. Seymour, G. B., and Gross, K. C., 1996, Cell wall disassembly and fruit softening. Postharv. News Info., 7:45N–52N.Google Scholar
  70. Shmulevich, I., Galili, N., and Benicho., N., 1995, Development of a nondestructive method for measuring the shelf-life of mango fruit, p. 275–287. In: Proc. Food Processing Automation IV Conf., Chicago, IL, Nov. 3–5.Google Scholar
  71. Smith, S. M., 1985, Measurement of the quality of apples: Recommendations of an EEC working group, Commission of the European Communities, Brussels.Google Scholar
  72. Stone, M. L., Armstrong, P. R., Chen, D. D., and Brusewitz, G. H., 1998, Peach firmness prediction by multiple location impulse testing, Trans. Am. Soc. Agric. Eng., 41:115–119.Google Scholar
  73. Stow, J., 1989, The involvement of calcium ions in maintenance of apple fruit tissue structure, J. Exp. Bot., 40:1053–1057.Google Scholar
  74. Studman, C. J, and Yuwana, 1992, Twist test for measuring fruit firmness, J. Texture Studies., 23(2):215–227.CrossRefGoogle Scholar
  75. Sundstrom, F. J., and Carter, S. J, 1983, Influence of K and Ca on quality and yield of watermelon, J. Am. Soc. Hort. Sci., 108:879–881.Google Scholar
  76. Szczesniak, A. S., 1963, Classification of textural characteristics, J. Food Sci., 28:385–389.CrossRefGoogle Scholar
  77. Szczesniak, A. S., 1963, Objective measurement of food texture, J. Food Sci., 28:410–420.CrossRefGoogle Scholar
  78. Szczesniak, A. S., Humbaugh, P. R., and Block, H. W., 1970, Behavior of different foods in the standard compression cell of the shear press and the effect of sample weight on peak area and maximum force, J Texture Studies, 1:356–378.CrossRefGoogle Scholar
  79. Voisey, P. W., and Kloek, M., 1981, Effect of cell size on the performance of the shear-compression texture test cell, J. Texture Studies, 12:133–139.CrossRefGoogle Scholar
  80. Wann, E. V., 1996, Physical characteristics of mature green and ripe tomato fruit of normal and firm genotypes, J. Am. Soc. Hort. Sci., 121:380–383.Google Scholar
  81. Wu, T., and Abbott, J. A., 2002, Firmness and force relaxation characteristics of tomatoes stored intact or as slices, Postharv. Biol. Technol., 24:59–68.CrossRefGoogle Scholar
  82. Yamaguchi, M., Hughes, D. L., Yabumoto, K., and Jennings, W. G., 1977, Quality of cantaloupe muskmelons: variability and attributes, Sci. Hortic., 6:59–70.CrossRefGoogle Scholar
  83. Zapp, H. R., Ehlert, S. H., Brown, G. K., Armstrong, P. R. and Sober, S. S., 1990. Advanced instrumented sphere (IS) for impact measurements, Trans. Am. Soc. Agric. Eng., 33: 955–960Google Scholar
  84. Zhang, X., Stone, M. L., Chen, D., Maness, N. O., and Brusewitz, G. H., 1994, Peach firmness determination by puncture resistance, drop impact, and sonic impulse, Trans. Am. Soc. Agric. Eng., 37:495–500.Google Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • Judith A. Abbott
    • 1
  1. 1.Produce Quality and safety Laboratory, USDAAgricultural Research ServiceBeltsvilleUSA

Personalised recommendations