Skip to main content

Arginine and Polyamine Metabolism

  • Chapter
Pseudomonas

Abstract

Arginine can serve many bacteria as a source of carbon, energy, and nitrogen, as a building unit of proteins, and as a precursor of polyamine synthesis14, 27. It can also be an ammonia source for bacterial adaptation to acid environments13, 59, 101. All of the major arginine catabolic pathways initiated by arginase, arginine deiminase (ADI), arginine succinyltransferase (AST), arginine decarboxylase (ADC), or arginine dehydrogenase (ADH), occur in bacteria14. Many bacteria have more than one route to utilize arginine depending on the physiological purpose. Pseudomonas aeruginosa PAO1 possesses four pathways of arginine metabolism (ADI, AST, ADC and ADH; Figure 1). The ADI and AST pathway genes were first established in strain PAO128, 39. Several ADC and ADH pathway genes have been recently identified and characterized in this strain65, 68.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Allison, S.L. and Phillips, A.T., 1990, Nucleotide sequence of the gene encoding the repressor for the histidine utilization genes of Pseudomonas putida. J. Bacteriol., 172:5470–5476.

    PubMed  CAS  Google Scholar 

  2. Arai, H., Igarashi, Y., and Kodama, T., 1995, Expression of the nir and nor genes for denitrification of Pseudomonas aeruginosa requires a novel CRP/FNR-related transcriptional regulator, DNR, in addition to ANR. FEBS Lett., 371:73–76.

    Article  PubMed  CAS  Google Scholar 

  3. Arai, H., Kodama, T., and Igarashi, Y., 1997, Cascade regulation of the two CRP/FNR-related transcriptional regulators (ANR and DNR) and the denitrification enzymes in Pseudomonas aeruginosa. Mol. Microbiol., 25:1141–1148.

    Article  PubMed  CAS  Google Scholar 

  4. Barcelona-Andres, B., Marina, A., and Rubio, V., 2002, Gene structure, organization, expression, and potential regulatory mechanisms of arginine catabolism in Enterococcus faecalis. J. Bacteriol., 184:6289–6300.

    Article  PubMed  CAS  Google Scholar 

  5. Bartsch, K., von Johnn-Marteville, A., and Schulz, A., 1990, Molecular analysis of two genes of the Escherichia coli gab cluster: Nucleotide sequence of the glutamate:succinic semialdehyde transaminase gene (gabT) and characterization of the succinic semialdehyde dehydro-genase gene (gabD). J. Bacteriol., 172:7035–7042

    PubMed  CAS  Google Scholar 

  6. Baur, H., Tricot, C., Stalon, V., and Haas, D., 1990, Conversion of catabolic ornithine carbamoyltransferase to an anabolic enzyme. J. Biol. Chem., 265:14728–14731.

    PubMed  CAS  Google Scholar 

  7. Belitsky, B.R., 2002, Biosynthesis of amino acids of the glutamate and aspartate family, alanine, and polyamines. In A.L. Sonenshein, J.A. Hoch, and R. Losick (eds), Bacillus subtilis and Its Closest Relatives: From Genes to Cells, pp. 203–231. ASM Press, Washington DC.

    Google Scholar 

  8. Belitsky, B.R. and Sonenshein, A.L., 2002, GabR, a member of a novel protein family, regulates the utilization of 7-aminobutyrate in Bacillus subtilis. Mol Microbiol., 45:569–583

    Article  PubMed  CAS  Google Scholar 

  9. Bourdineaud, J.-P, Heierli, D.H., Gamper, M., Verhoogt, HJ., Driessen, A.J., Konings, W.N., Lazdunski, C., and Haas, D., 1993, Characterization of the arcD arginine:ornithine exchanger of Pseudomonas aeruginosa. Localization in the cytoplasmic membrane and a topological model. J. Biol. Chem., 268:5417–5424.

    PubMed  CAS  Google Scholar 

  10. Boyle, S.M., Barroso, L., Moore, R.C., Wright, J.M., and Patel, T., 1994, Primary structure of the speC gene encoding biosynthetic ornithine decarboxylase in Escherichia coli. Gene, 151:157–160.

    Article  PubMed  CAS  Google Scholar 

  11. Cohen, S., 1998, A Guide to the Polyamines. Oxford University Press, Oxford.

    Google Scholar 

  12. Chou, C.S. and Rodwell, VW., 1972, Metabolism of basic amino acids in Pseudomonas putida. 7-guanidinobutyrate amidohydrolase. J. Biol. Chem., 247:4486–4490.

    PubMed  CAS  Google Scholar 

  13. Cui, S., Meng, J., and Bhagwat, A.A., 2001, Availability of glutamate and arginine during acid challenge determines cell density-dependent survival phenotype of Escherichia colistrains. Appl. Environ. Microbiol., 67:4914–4918

    Article  PubMed  CAS  Google Scholar 

  14. Cunin, R., Glansdorff, N., Piérard, A., and Stalon, V., 1986, Biosynthesis and metabolism of arginine in bacteria. Microbiol. Rev., 50:314–352.

    PubMed  CAS  Google Scholar 

  15. Davis, R.H., Morris, D.R., and Coffino, P., 1992, Sequestered end products and enzyme regulation: The case of ornithine decarboxylase. Microbiol. Rev., 56:280–290.

    PubMed  CAS  Google Scholar 

  16. D’Hooghe, I., Vander Wauven, C., Michielis, J., Tricot, C., De Wilde, P., Vanderleyden, J., and Stalon, V., 1997, The arginine pathway in Rhizobium etli: DNA sequence analysis and functional study of the arcABC genes. J. Bacteriol., 179:7403–7409.

    Google Scholar 

  17. De Angelis, M., Mariotti, L., Rossi, J., Servili, M., Fox, RE, Rollan, G., and Gobbetti, M., 2002, Arginine catabolism by sourdough lactic acid bacteria: Purification and characterization of the arginine deiminase pathway enzymes from Lactobacillus sanfranciscensis CB1. Appl. Environ. Microbiol., 68:6193–6201.

    Article  PubMed  CAS  Google Scholar 

  18. Donald, L.J., Molgat, G.F., and Duckworth, H.W., 1989, Cloning, sequence, and expression of the gene for NADH-sensitive citrate synthase of Pseudomonas aeruginosa. J. Bacteriol., 171:5542–5550.

    PubMed  CAS  Google Scholar 

  19. Dong, Y., Chen, Y.Y., Snyder, J.A., and Burne, R.A., 2002, Isolation and molecular analysis of the gene cluster for the arginine deiminase system from Streptococcus gordonii DLL Appl. Environ. Microbiol., 68:5549–5553.

    Article  CAS  Google Scholar 

  20. Dunny, G.M. and Winans, S.C. (eds), 1999, Cell-Cell Signaling in Bacteria. American Society for Microbiology Press, Washigton, DC.

    Google Scholar 

  21. Egan, S.M., 2002, Growing repertoire of AraC/XylS activators. J. Bacteriol., 184:5529–5532.

    Article  PubMed  CAS  Google Scholar 

  22. Fraley, CD., Kim, J.H., McCann, M.P., and Matin, A., 1998, The Escherichia colistarvation gene cstC is involved in amino acid catabolism. J. Bacteriol, 180:4287–4290.

    PubMed  CAS  Google Scholar 

  23. Galimand, M., Gamper, M., Zimmermann, A., and Haas, D., 1991, Positive FNR-like control of anaerobic arginine degradation and nitrate respiration in Pseudomonas aeruginosa. J. Bacteriol, 173:1598–1606.

    PubMed  CAS  Google Scholar 

  24. Gallegos, M.T., Schleif, R., Bairoch, A., Hofmann, K., and Ramos, J.L., 1997, AraC/XylS family of transcriptional regulators. Microbiol. Mol. Biol. Rev., 61:393–410.

    PubMed  CAS  Google Scholar 

  25. Gamper, M. and Haas, D., 1993, Processing of the Pseudomonas aeruginosa arcDABC mRNA requires functional RNase E in Escherichia coli. Gene, 129:119–122.

    Article  PubMed  CAS  Google Scholar 

  26. Gerritse, G. and Quax, W.J., 2001, Expression system for altered expression levels. US Patent No. 6,313,283 B1.

    Google Scholar 

  27. Glansdorff, N., 1996, Biosynthesis of arginine and polyamines. In F.C. Neidhardt, R. Curtiss III, J.L. Ingraham, M. Schaechter, and H.E. Umbarger (eds), Escherichia coli and Salmonella: Cellular and Molecular Biology, 2nd edn, pp. 408–433. ASM Press, Washington, DC.

    Google Scholar 

  28. Haas, D., Galimand, M., Gamper, M., and Zimmermann, A., 1990, Arginine network of Pseudomonas aeruginosa: Specific and global controls. In S. Silver, A.M. Chakraberty, B. Iglewski, and S. Kaplan (eds), Pseudomonas: Biotransformations, Pathogenesis, and Evolving Biotechnology, pp. 303–316. ASM Press, Washington DC.

    Google Scholar 

  29. Haas, D., Holloway, B.W., Schamböck, A., and Leisinger, T., 1977, The genetic organization of arginine biosynthesis in Pseudomonas aeruginosa. Mol Gen. Genet., 154:7–22.

    Article  PubMed  CAS  Google Scholar 

  30. Haas, D., Matsumoto, H., Moretti, P., Stalon, V., and Mercenier, A., 1984, Arginine degradation in Pseudomonas aeruginosa mutant blocked in two arginine catabolic pathways. Mol. Gen. Genet., 193:437–444.

    Article  PubMed  CAS  Google Scholar 

  31. Hasegawa, N., Arai, H., and Igarashi, Y., 1998, Activation of a consensus FNR-dependent promoter by DNR of Pseudomonas aeruginosa in response to nitrite. FEMS Microbiol. Lett., 166:213–217.

    Article  PubMed  CAS  Google Scholar 

  32. Hester, K.L., Lehman, J., Najar, F., Song, L., Roe, B.A., MacGregor, Hager, P.W., Phibbs, P.V, Jr, and Sokatch, J.R., 2000, Crc is involved in catabolite repression control of the bkd operon of Pseudomonas putida and Pseudomonas aeruginosa. J. Bacteriol., 182:1144–1149.

    Article  PubMed  CAS  Google Scholar 

  33. Heurlier, K., Dénervaud, V., Pessi, G., Reimmann, C., and Haas, D., 2003, Negative control of quorum sensing by RpoN (σ54) in Pseudomonas aeruginosa PAO1. J. Bacteriol., 185:2227–2235.

    Article  PubMed  CAS  Google Scholar 

  34. Hisano, T., Abe, S., Wakashiro, M., Kimura, A., and Murata, K., 1990, Microbial spermidine dehydrogenase: Purification and properties of the enzyme in Pseudomonas aeruginosa and Citrobacter freundii. J. Ferment. Bioeng., 69:335–340.

    Article  CAS  Google Scholar 

  35. Hisano, T., Murata, K., Kimura, A., Matsushita, K., and Adachi, O., 1992, Further properties of spermidine dehydrogenase from Citrobacter freundii IFO 12681. Biosci. Biotech. Biochem., 56:311–314.

    Article  CAS  Google Scholar 

  36. Hisano, T., Murata, K., Kimura, A., Matsushita, K., Toyama, H., and Adachi, O., 1992, Characterization of membrane-bound spermidine dehydrogenase of Citrobacter freundii. Biosci. Biotech. Biochem., 56:1916–1920.

    Article  CAS  Google Scholar 

  37. Hoch, J.A. and Silhavy, T.J. (eds), 1995, Two-Component Signal Transduction. American Society for Microbiology Press, Washigton, DC.

    Google Scholar 

  38. Ishimoto, K.S. and Lory, S., 1989, Formation of pilin in Pseudomonas aeruginosa requires the alternative a factor (RpoN) of RNA polymerase. Proc. Natl. Acad. Sci. USA, 86:1954–1957.

    Article  PubMed  CAS  Google Scholar 

  39. Itoh, Y., 1997, Cloning and characterization of the aru genes encoding enzymes of the catabolic arginine succinyltransferase pathway in Pseudomonas aeruginosa. J. Bacteriol., 179:7280–7290.

    PubMed  CAS  Google Scholar 

  40. Itoh, Y., Soldati, L., Stalon, V., Falmagne, P., Terawaki, Y., Leisinger, T., and Haas, D., 1988, Anabolic ornithine carbamoyltransferase of Pseudomonas aeruginosa: Nucleotide sequence and transcriptional control of the argF structural gene. J. Bacteriol., 170:2725–2734.

    PubMed  CAS  Google Scholar 

  41. Jann, A., Matsumoto, H., and Haas, D., 1988, The fourth arginine pathway of Pseudomonas aeruginosa. J. Gen. Microbiol., 134:1043–1053.

    PubMed  CAS  Google Scholar 

  42. Jann, A., Stalon, V., Vander Wauven, C., Leisinger, T., and Haas, D., 1986, N 2-Succinylated intermediates in an arginine catabolic pathway of Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA, 83:4937–4941.

    Article  PubMed  CAS  Google Scholar 

  43. Ka, J.O., Urbance, J., Ye, R.W., Ahn, T.Y, and Tiedje, IM., 1997, Diversity of oxygen and N-oxide regulation of nitrite reductase in denitrifying bacteria. FEMS Microbiol. Lett., 156:55–60.

    Article  PubMed  CAS  Google Scholar 

  44. Kiupakis, A.K. and Reitzer, L., 2002, ArgR-independent induction and ArgR-dependent superinduction of the astCADBE operon in Escherichia coli. J. Bacteriol., 184:2940–2950.

    Article  PubMed  CAS  Google Scholar 

  45. Klingel, U., Miller, CM. North, A.K., Stockley, P.G., and Baumberg, S., 1995, A binding site for activation by the Bacillus subtilis AhrC protein, a repressor/activator of arginine metabolism. Mol. Gen. Genet., 248:329–340.

    Article  PubMed  CAS  Google Scholar 

  46. Krieger, R., Rompf, A., Schobert, M., and Jahn, D., 2002, The Pseudomonas aeruginosa hemA promoter is regulated by Anr, Dnr, NarL and integration host factor. Mol. Genet. Genomics, 267:409–417.

    Article  PubMed  CAS  Google Scholar 

  47. Kwon, D.H., Lu, CD., Walthall, D.A., Brown, T.M., Houghton, J.E., and Abdelal, A.T., 1994, Structure and regulation of the car AB operon of Pseudomonas aeruginosa and Pseudomonas stutzeri: No untranslated region exists. J. Bacteriol., 176:2532–2542.

    PubMed  CAS  Google Scholar 

  48. Laville, J., Blumer, C., Von Schroetter, C., Gaia, V., Defago, G., Keel, C., and Haas, D., 1998, Characterization of the hcnABC gene cluster encoding hydrogen cyanide synthase and anaerobic regulation by ANR in the strictly aerobic biocontrol agent Pseudomonas fluorescens CHA0. J. Bacteriol, 180:3187–3196.

    PubMed  CAS  Google Scholar 

  49. Lu, CD. and Abdelal, A.T., 1999, Role of ArgR in activation of the ast operon, encoding enzymes of the arginine succinyltransferase pathway in Salmonella typhimurium. J. Bacteriol., 181:1934–1938.

    PubMed  CAS  Google Scholar 

  50. Lu, CD., Winteler, H., Abdelal, A., and Haas, D., 1999, The ArgR regulatory protein, a helper to the anaerobic regulator ANR during transcriptional activation of the arcD promoter in Pseudomonas aeruginosa. J. Bacteriol., 181:2459–2464.

    PubMed  CAS  Google Scholar 

  51. Lu, CD. and Abdelal, A.T., 2001, The gdhB gene of Pseudomonas aeruginosa encodes an arginine-inducible NAD+-dependent glutamate dehydrogenase which is subject to allosteric regulation. J. Bacteriol., 183:490–499.

    Article  PubMed  CAS  Google Scholar 

  52. Lu, CD., Itoh, Y., Nakada, Y., and Jiang, Y., 2002, Functional analysis and regulation of the divergent spuABCDEFGH-spul operons for polyamine uptake and utilization in Pseudomonas aeruginosa PAO1. J. Bacteriol., 184:3765–3773.

    Article  PubMed  CAS  Google Scholar 

  53. Lüthi, E., Baur, H., Gamper, M., Brunner, F., Villeval, D., Mercenier, A., and Haas, D., 1990, The arc operon for anaerobic arginine catabolism in Pseudomonas aeruginosa contains an additional gene, arcD, encoding a membrane protein. Gene, 87:37–43.

    Article  PubMed  Google Scholar 

  54. Lynch, A.S. and Lin, E.C.C., 1996, Responses to molecular oxygen. In F.C. Neidhardt, R. Curtiss III, J.L. Ingraham, M. Schaechter, and H.E. Umbarger (eds), Escherichia coli and Salmonella: Cellular and Molecular Biology, 2nd edn, pp. 1526–1538. American Society for Microbiology Press, Washigton, DC.

    Google Scholar 

  55. Magasanik, B., 1996, Regulation of nitrogen utilization, pp. 1344–1356. In F.C. Neidhardt, R. Curtiss III, J.L. Ingraham, M. Schaechter, and H.E. Umbarger (eds), Escherichia coli and Salmonella: Cellular and Molecular Biology, 2nd edn. American Society for Microbiology Press, Washigton

    Google Scholar 

  56. Maghnouj, A., Abu-Bakr, A.A., Baumberg, S., Stalon, V., and Vander Wauven, C., 2000, Regulation of anaerobic arginine catabolism in Bacillus licheniformis by a protein of the Crp/Fnr family. FEMS Microbiol Lett., 191:227–234.

    Article  PubMed  CAS  Google Scholar 

  57. Maghnouj, A., de Sousa Cabrai, T.F., Stalon, V., and Vander Wauven, C., 1998, The arcABDC gene cluster, encoding the arginine deiminase pathway of Bacillus licheniformis, and its activation by the arginine repressor argR. J. Bacteriol., 180:6468–6475

    CAS  Google Scholar 

  58. Marcq, S., Diaz-Ruano, A., Charlier, P., Dideberg, O., Tricot, C., Piérard, A., and Stalon, V., 1991, Molecular size and symmetry of Pseudomonas aeruginosa catabolic ornithine carbamoyltransferase: An X-ray crystallography analysis. J. Mol. Biol., 220:9–12.

    Article  PubMed  CAS  Google Scholar 

  59. Marquis, R., Bender, G.R., Murray, D.R., and Wong, A., 1987, Arginine deiminase system and bacterial adaptation to acid environments. Appl. Environ. Microbiol., 53:198–200.

    PubMed  CAS  Google Scholar 

  60. Mercenier, A., Simon, J.-P, Haas, D., and Stalon, V., 1980, Catabolism of L-arginine by Pseudomonas aeruginosa. J. Gen. Microbiol., 116:381–389.

    PubMed  CAS  Google Scholar 

  61. Miller, D.L. and Rodwell, VW., 1971, Metabolism of basic amino acids in Pseudomonas putida. Intermediates in L-arginine metabolism. J. Biol. Chem., 246:5053–5058.

    PubMed  CAS  Google Scholar 

  62. Mohr, CD., Martin, D.W., Konyecsni, W.M., Govan, J.R.W., Lory, S., and Deretic, V., 1990, Role of the far-upstream sites of the algD promoter and the algR and rpoN genes in environmental modulation of mucoidy in Pseudomonas aeruginosa. J. Bacteriol., 172:6576–6580.

    PubMed  CAS  Google Scholar 

  63. Mouz, N., Tricot, C., Ebel, C., Petillot, Y., Stalon, V., and Dideberg, O., 1996, Use of a designed fusion protein dissociates allosteric properties from the dodecameric state of Pseudomonas aeruginosa catabolic ornithine carbamoyltransferase. Proc. Natl. Acad. Sci. USA, 93:9414–9419.

    Article  PubMed  CAS  Google Scholar 

  64. Nixon, B.T., Ronson, C.W., and Ausubel, F.M., 1986, Two-component regulatory systems responsive to environmental stimuli share strong conserved domains with the nitrogen assim-ilation regulatory genes ntrB and ntrC. Proc. Natl. Acad. Sci. USA, 83:7850–7854

    Article  PubMed  CAS  Google Scholar 

  65. Nakada, Y and Itoh, Y., 2002, Characterization and regulation of the gbuA gene, encoding guanidinobutyrase in the arginine dehydrogenase pathway of Pseudomonas aeruginosa PAO1. J. Bacteriol., 184:3377–3384.

    Article  PubMed  CAS  Google Scholar 

  66. Nakada, Y and Itoh, Y., 2002, Divergent structure and regulation mechanism of proline catabolic systems: Characterization of the putAP proline catabolic operon of Pseudomonas aeruginosa PAO1 and its regulation by PutR, an AraC/XylS family protein. J. Bacteriol., 185:5633–5640.

    Article  CAS  Google Scholar 

  67. Nakada, Y and Itoh, Y., 2003, Identification of the putrescine biosynthetic genes in Pseudomonas aeruginosa and characterization of agmatine deiminase and N-carbamolputrescine amidohydrolase of the arginine decarboxylase pathway. Microbiology, 149:707–714.

    Article  PubMed  CAS  Google Scholar 

  68. Nakada, Y., Jiang, Y., Nishijyo, T., Itoh, Y., and Lu, CD., 2001, Molecular characterization and regulation of the aguBA operon, responsible for agmatine utilization in Pseudomonas aeruginosa PAO1.J. Bacteriol., 183:6517–6524.

    Article  PubMed  CAS  Google Scholar 

  69. Niegemann, E., Schulz, A., and Bartsch, K., 1993, Molecular organization of the Escherichia coli gab cluster: Nucleotide sequence of the structural genes gabD and gabP and expression of the GABA permease gene. Arch. Microbiol., 160:454–460.

    Article  PubMed  CAS  Google Scholar 

  70. Nishijyo, T., Haas, D., and Itoh, Y., 2001, The CbrA-CbrB two-component regulatory system controls the utilization of multiple carbon and nitrogen sources in Pseudomonas aeruginosa. Mol. Microbiol., 40:917–931.

    Article  PubMed  CAS  Google Scholar 

  71. Nishijyo, T., Park, S.M., Lu, CD., Itoh, Y., and Abdelal, A.T., 1998, Molecular characterization and regulation of an operon encoding a system for transport of arginine and ornithine and the ArgR regulatory protein in Pseudomonas aeruginosa. J. Bacteriol., 180:5559–5566.

    PubMed  CAS  Google Scholar 

  72. Nguyen, VT., Baker, D.P., Tricot, C., Baur, H., Villeret, V., Dideberg, O., Gigot, D., Stalon, V., and Haas, D., 1996, Catabolic ornithine carbamoyltransferase of Pseudomonas aeruginosa: Importance of the N-terminal region for dodecameric structure and homotropic carbamoylphosphate cooperativity. Eur. J. Biochem., 236:283–293.

    Article  PubMed  CAS  Google Scholar 

  73. Nguyen, VT, Tricot, C., Stalon, V., Dideberg, O., Villeret, V., and Haas, D., 1994, Methionine-321 in the C-terminal α-helix of catabolic ornithine carbamoyltransferase from Pseudomonas aeruginosa is important for positive homotropic cooperativity. FEMS Microbiol. Lett., 124:411–418.

    PubMed  CAS  Google Scholar 

  74. Ochs, M.M., Lu, C.-D., Hancock, R.W., and Abdelal, A.T., 1999, Amino acid-mediated induction of the basic amino acid-specific outer membrane protein OprD from Pseudomonas aeruginosa. J. Bacteriol., 181:5426–5432.

    PubMed  CAS  Google Scholar 

  75. Ohtani, K., Bando, M., Swe, T, Banu, S., Oe, M., Hayashi, H., and Shimizu, T., 1997, Collagenase gene colA is located in the 3′-flanking regions of the perfringolysin O pfoA locus in Clostridium perfringens. FEMS Microbiol. Lett., 146:155–159.

    Article  PubMed  CAS  Google Scholar 

  76. Park, S.M., Lu, CD., and Abdelal, A.T., 1997, Cloning and characterization of argR, a gene that participates in regulation of arginine biosynthesis and catabolism in Pseudomonas aeruginosa VAOl.J. Bacteriol., 179:5300–5308.

    PubMed  CAS  Google Scholar 

  77. Park, S.M., Lu, CD., and Abdelal, A.T., 1997, Purification and characterization of an arginine regulatory protein, ArgR, from Pseudomonas aeruginosa and its interactions with the control regions for the car, argF, and aru operon. J. Bacteriol., 179:5309–5317.

    PubMed  CAS  Google Scholar 

  78. Pessi, G. and Haas, D., 2000, Transcriptional control of the hydrogen cyanide biosynthetic genes hcnABC by the anaerobic regulator ANR and the quorum-sensing regulators LasR and RhlR in Pseudomonas aeruginosa. J. Bacteriol., 182:6940–6949.

    Article  PubMed  CAS  Google Scholar 

  79. Piotrowski, M., Janowitz, T, and Kneifel, H., 2003, Plant C-N hydrolases and the identification of a plant N-carbamoylputrescine amidohydrolase involved in polyamine biosynthesis. J. Biol. Chem., 278:1708–1712.

    Article  PubMed  CAS  Google Scholar 

  80. Price, T., French, G.L., Talsamia, H., and Phillips, L., 1986, Differentiation of Streptococcus sanguis and S. mitior by whole-cell rhamnose content and possession of arginine dihydrolase. J. Med. Microbiol., 21:189–197.

    Article  PubMed  CAS  Google Scholar 

  81. Ruepp, A. and Soppa, J., 1996, Fermentative arginine degradation in Halobacterium salinarium (formerly Halobacterium halobium): Genes, gene products, and transcripts of the arcRACB gene cluster. J. Bacteriol., 178:4942–4947.

    PubMed  CAS  Google Scholar 

  82. Ray, A. and Williams, H.D., 1997, The effects of mutation of the anr gene on the aerobic respiratory chain of Pseudomonas aeruginosa. FEMS Microbiol. Lett., 156:227–232.

    Article  PubMed  CAS  Google Scholar 

  83. Rompf, A., Hungerer, C., Hoffmann, T., Lindenmeyer, M., Romling, U., Gross, U., Doss, M.O., Arai, H., Igarashi, Y., and Jahn, D., 1998, Regulation of Pseudomonas aeruginosa hemF and hemN by the dual action of the redox response regulators Anr and Dnr. Mol. Microbiol., 29:985–997.

    Article  PubMed  CAS  Google Scholar 

  84. Samsonova, N., Smirnov, S.V, Altaian, LB., and Ptitsyn, L.R., 2003, Molecular cloning and characterization of Escherichia coliK12 ygiG gene. BMC Microbiol., 3:2.

    Article  PubMed  Google Scholar 

  85. Schneider, B.L., Kiupakis, A.K., and Reitzer, L.J., 1998, Arginine catabolism and the arginine succinyltransferase pathway in Escherichia coli. J. Bacteriol., 180:4278–4286.

    PubMed  CAS  Google Scholar 

  86. Schneider, B.L., Rugack, S., Kiupakis A.K., Kasbarian, H., Pybus C., and Reitzer, L., 2002, The Escherichia coli gabDTPC operon: Specific 7-aminobutyrate catabolism and nonspecific induction. J. Bacteriol., 184:6967–6986.

    Google Scholar 

  87. Shingler, V., 1996, Signal sensing σ54-dependent regulators: Derepression as a control mechanism. Mol. Microbiol., 19:409–416.

    Article  PubMed  CAS  Google Scholar 

  88. Stover, C.V et al., 2000, Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature, 406:959–964.

    Article  PubMed  CAS  Google Scholar 

  89. Tabor, C.W. and Kellogg, P.D., 1970, Identification of flavin adenine dinucleotide and heme in a homogeneous spermidine dehydrogenase from Serratica marcescens. J. Biol. Chem., 245:5424–5433.

    PubMed  CAS  Google Scholar 

  90. Tobes, R. and Ramos, J.L., 2002, AraC-XylS database: A family of positive transcriptional regulators in bacteria. Nucleic Acids Res., 30:318–321.

    Article  PubMed  CAS  Google Scholar 

  91. Tonon, T., Bourdineaud, P., and Louvaud-Funel, A., 2001, The arcABC gene cluster encoding the arginine deiminase pathway of Oenococcus oeni, and arginine induction of a CRP-like gene. Res. Microbiol., 152:653–661.

    Article  PubMed  CAS  Google Scholar 

  92. Totten, P.A., Lara, J.C., and Lory, S., 1990, The rpoN gene product of Pseudomonas aeruginosa is required for expression of diverse genes, including the flagellin gene. J. Bacteriol., 172:289–296.

    Google Scholar 

  93. Tricot, C., Nguyen, V.T., and Stalon, V., 1993, Steady-state kinetics and analysis of pH dependence on wild-type and a modified allosteric Pseudomonas aeruginosa ornithine carbamoyltransferase containing the replacement of glutamine 105 by alanine. Eur. J. Biochem., 215:833–839.

    Article  PubMed  CAS  Google Scholar 

  94. Tricot, C., Schmid, S., Baur, H., Villeret, V., Dideberg, O., Haas, D., and Stalon, V., 1994, Catabolic ornithine carbamoyltransferase of Pseudomonas aeruginosa: Changes of allosteric properties resulting from modifications at the C-terminus. Eur. J. Biochem., 221:555–561.

    Article  PubMed  CAS  Google Scholar 

  95. Tricot, C., Stalon, V., and Legrain, C., 1991, Isolation and characterization of Pseudomonas putida mutants affected in arginine, ornithine and citrulline catabolism: Function of the arginine oxidase and arginine succinyltransferase pathways. J. Gen. Microbiol., 137:2911–2918.

    Article  PubMed  CAS  Google Scholar 

  96. Tricot, C., Vander Wauven, C., Wattiez, R., Falmagne, P., and Stalon, V., 1994, Purification and properties of a succinyltransferase from Pseudomonas aeruginosa specific for both arginine and ornithine. Eur. J. Biochem., 224:853–861.

    Article  PubMed  CAS  Google Scholar 

  97. Tricot, C., Villeret, V., Sainz, G., Dideberg, O., and Stalon, V., 1998, Allosteric regulation in Pseudomonas aeruginosa catabolic ornithine carbamoyltransferase revisit: Association of concerted homotropic cooperative interactions and local heterotropic effects. J. Mol. Biol., 283:695–704.

    Article  PubMed  CAS  Google Scholar 

  98. Vander Wauven, C., Jann, A., Haas, D., Leisinger, T., and Stalon, V., 1988, N 2-Succinylornithine in ornithine catabolism of Pseudomonas aeruginosa. Arch. Microbiol., 150:400–404.

    Article  Google Scholar 

  99. Vander Wauven, C. and Stalon, V., 1985, Occurrence of succinyl derivatives in the catabolism of arginine in Pseudomonas cepacia. J. Bacteriol., 164:882–886.

    Google Scholar 

  100. Vanderbilt, A.S., Gaby, N.S., and Rodwell, VW., 1975, Intermediates and enzymes between α-ketoarginine and γ-guanidinobutyrate in the L-arginine catabolic pathway of Pseudomonas putida. J. Biol Chem., 250:5322–5329.

    PubMed  CAS  Google Scholar 

  101. Vergès, M.C., Zuňiga, M., Morel-Deville, F., Pérez-Martínez, G., Zagorec, M., and Ehrlich, S.D., 1999, Relationships between arginine degradation, pH and survival in Lactobacillus sakei. FEMS Microbiol Lett., 180:297–304.

    Article  Google Scholar 

  102. Verhoogt, HJ., Smit, H., Abee, T., Gamper, M., Driessen, A.J., Haas, D., and Konings, W.N., 1992, arcD, the first gene of the arc operon for anaerobic arginine catabolism in Pseudomonas aeruginosa, encodes an arginine-ornithine exchanger. J. Bacteriol. 174:1568–1573.

    PubMed  CAS  Google Scholar 

  103. Vijgenboom, E., Busch, J.E., and Canters, G.W., 1997, In vivo studies disprove an obligatory role of azurin in denitrification in Pseudomonas aeruginosa and show that azu expression is under control of rpoS and ANR. Microbiology, 143:2853–2863.

    Article  PubMed  CAS  Google Scholar 

  104. Villeret, V., Tricot, C., Stalon, V., and Dideberg, O., 1995, Crystal structure of Pseudomonas aeruginosa catabolic ornithine transcarbamoylase at 3.0-Å resolution: A different oligomeric organization in the transcarbamoylase family. Proc. Natl. Acad. Sci. USA, 92:10762–10766.

    Article  PubMed  CAS  Google Scholar 

  105. Voellmy, R. and Leisinger, T., 1975, Dual role for N 2-acetylornithine 5-aminotransferase from Pseudomonas aeruginosa in arginine biosynthesis and arginine catabolism. J. Bacteriol., 122:799–809.

    PubMed  CAS  Google Scholar 

  106. Voellmy, R. and Leisinger, T., 1976, Role of 4-aminobutyrate aminotransferase in the arginine metabolism of Pseudomonas aeruginosa. J. Bacteriol., 128:722–729.

    CAS  Google Scholar 

  107. Vollack, K.U., Hartig, E., Korner, H., and Zumft, W.G., 1999, Multiple transcription factors of the FNR family in denitrifying Pseudomonas stutzen: Characterization of four fnr-like genes, regulatory responses and cognate metabolic processes.Mol Microbiol., 31:1681–1694.

    Article  PubMed  CAS  Google Scholar 

  108. Yorifuji, T. and Sugai, I., 1978, 3-Guanidinopropionate amidinohydrolase and 4-guanidinobutyrate amidinohydrolase of Pseudomonas aeruginosa PAO1. Agric. Biol. Chem., 42:1789–1790.

    Article  CAS  Google Scholar 

  109. Ye, R.W., Haas, D., Ka, J.O., Krishnapillai, V., Zimmermann, A., Baird, C., and Tiedje, J.M., 1995, Anaerobic activation of the entire denitrification pathway in Pseudomonas aeruginosa requires Anr, an analog of Fnr. J. Bacteriol., 177:3606–3609.

    PubMed  CAS  Google Scholar 

  110. ZŬniga, M., Champomier-Verges, M., Zagorec, M., and Pérez-Martínez, G., 1998, Structural and functional analysis of the gene cluster encoding the enzymes of the arginine deiminase pathway of Lactobacillus sake. J. Bacteriol., 180:4154–4159.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Itoh, Y., Nakada, Y. (2004). Arginine and Polyamine Metabolism. In: Ramos, JL. (eds) Pseudomonas. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-9088-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-9088-4_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4789-7

  • Online ISBN: 978-1-4419-9088-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics