Pseudomonas pp 193-227 | Cite as

Denitrification by Pseudomonads: Control and Assembly Processes

  • Walter G. Zumft

Abstract

Denitrification is part of the biogeochemical nitrogen cycle driven by prokaryotes. The introduction of reduced nitrogen into the biosphere by nitrogen fixation is reversed by the sequential action of nitrification and denitrification. A complete denitrification process, yielding dinitrogen from nitrate, consists of four respiratory systems utilizing as electron acceptors: nitrate, nitrite, nitric oxide (NO), and nitrous oxide (N2O) (Figure 1). Backward-running reactions of the N-cycle, nitrate assimilation and nitrate ammonification, as well as a short circuit represented by the anammox process, are not depicted in Figure 1. Nitrate assimilation and ammonification depend on sets of different enzymes as those of nitrate respiration75, 92. The anammox reaction, which reduces nitrite at the expense of ammonia oxidation to form dinitrogen, had been postulated on theoretical grounds. It was recently found in the genus Planctomyces and seems to be of ecological importance78. Because the process allows the simultaneous removal of oxidized and reduced nitrogen, it attracts considerable attention as a new way of treating wastewater. Although denitrification is a mode of anaerobic respiration, the known denitrifying prokaryotes are nearly exclusively aerobic organisms which express the process facultatively. A main theme of denitrification research, therefore, is how bacteria perceive the environmental signals to tum on the alternative gene programs and regulate the coordinate expression of the denitrification apparatus.

Keywords

Cysteine Bacillus Arginine Magnetite Carotenoid 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alvarez, M.L., Ai, J.Y., Zumft, W., Sanders-Loehr, J., and Dooley, D.M., 2001, Charactaerization of the copper-sulfur chromophores in nitrous oxide reductase by resonance Raman spectroscopy: Evidence for sulfur coordination in the catalytic cluster. J. Am. Chem. Soc., 123:576–587.PubMedCrossRefGoogle Scholar
  2. 2.
    Antholine, W.E., Kastrau, D.H.W., Steffens, G.C.M., Buse, G., Zumft, W.G., and Kroneck, P.M.H., 1992, A comparative EPR investigation of the multicopper proteins nitrousoxide reductase and cytochrome c oxidase. Eur. J. Biochem., 209:875–881.Google Scholar
  3. 3.
    Arai, H., Igarashi, Y., and Kodama, T., 1994, Structure and ANR-dependent transcription of the nir genes for denitrification from Pseudomonas aeruginosa. Biosci. Biotechnol. Biochem., 58:1286–1291.PubMedCrossRefGoogle Scholar
  4. 4.
    Arai, H., Igarashi, Y., and Kodama, T., 1995, Expression of the nir and nor genes for denitrification of Pseudomonas aeruginosa requires a novel CRP/FNR-related transcriptional regulator, DNR, in addition to ANR. FEBS Lett., 311:13–16.Google Scholar
  5. 5.
    Arai, H., Kodama, T., and Igarashi, Y., 1998, The role of the nirQOP genes in energy conservation during anaerobic growth of Pseudomonas aeruginosa. Biosci. Biotechnol. Biochem., 62:1995–1999.PubMedCrossRefGoogle Scholar
  6. 6.
    Arai, H., Kodama, T., and Igarashi, Y., 1999, Effect of nitrogen oxides on expression of the nir and nor genes for denitrification in Pseudomonas aeruginosa. FEMS Microbiol. Lett., 170:19–24.PubMedCrossRefGoogle Scholar
  7. 7.
    Arai, H., Mizutani, M., and Igarashi, Y., 2003, Transcriptional regulation of the nos genes for nitrous oxide reductase in Pseudomonas aeruginosa. Microbiology, 149:29–36.PubMedCrossRefGoogle Scholar
  8. 8.
    Baker, S.C., Ferguson, S.J., Ludwig, B., Page, M.D., Richter, O.-M.H., and van Spanning, R.J.M., 1998, Molecular genetics of the genus Paracoccus: Metabolic versatile bacteria with bioenergetic flexibility. Microbiol. Mol. Biol. Rev., 62:1046–1078.PubMedGoogle Scholar
  9. 9.
    Bazylinski, D.A., Frankel, R.B., and Jannasch, H.W., 1988, Anaerobic magnetite production by a marine, magnetotactic bacterium. Nature (London), 334:518–519.CrossRefGoogle Scholar
  10. 10.
    Beck, B.J. and Downs, D.M., 1999, A periplasmic location is essential for the role of the ApbE lipoprotein in thiamine synthesis in Salmonella typhimurium. J. Bacteriol., 181:7285–7290.PubMedGoogle Scholar
  11. 11.
    Bedzyk, L., Wang, T., and Ye, R.W., 1999, The periplasmic nitrate reductase in Pseudomonas sp. strain G-179 catalyzes the first step of denitrification. J. Bacteriol., 181:2802–2806.PubMedGoogle Scholar
  12. 12.
    Beinert, H., 1997, Copper A of cytochrome c oxidase, a novel, long-embattled, biological electron-transfer site. Eur. J. Biochem., 245:521–532.PubMedCrossRefGoogle Scholar
  13. 13.
    Bennasar, A., Rosselló-Mora, R., Lalucat, J., and Moore, E.R.B., 1996, 16S rRNA gene sequence analysis relative to genomovars of Pseudomonas stutzeri and proposal of Pseudomonas balearica sp. nov. Int. J. Syst. Bacteriol., 46:200–205.CrossRefGoogle Scholar
  14. 14.
    Berks, B.C., Ferguson, S.J., Moir, J.W.B., and Richardson, D.J., 1995, Enzymes and associated electron transport systems that catalyse the respiratory reduction of nitrogen oxides and oxyanions. Biochim. Biophys. Acta, 1232:97–173.PubMedCrossRefGoogle Scholar
  15. 15.
    Blümle, S. and Zumft, W.G., 1991, Respiratory nitrate reductase from denitrifying Pseudomonas stutzeri, purification, properties and target of proteolysis. Biochim. Biophys. Acta, 1057:102–108.CrossRefGoogle Scholar
  16. 16.
    Braun, C. and Zumft, W.G., 1991, Marker exchange of the structural genes for nitric oxide reductase blocks the denitrification pathway of Pseudomonas stutzeri at nitric oxide. J. Biol. Chem., 266:22785–22788.PubMedGoogle Scholar
  17. 17.
    Brown, K., Djinovic-Carugo, K., Haltia, T., Cabrito, I., Saraste, M., Moura, J.J.G., Moura, I., Tegoni, M., and Cambillau, C., 2000, Revisiting the catalytic CuZ cluster of nitrous oxide (N2O) reductase. Evidence of a bridging inorganic sulfur. J. Biol. Chem., 275:41133–41136.PubMedCrossRefGoogle Scholar
  18. 18.
    Brown, K., Tegoni, M., Prudêncio, M., Pereira, A.S., Besson, S., Moura, J.J., Moura, I., and Cambillau, C., 2000, A novel type of catalytic copper cluster in nitrous oxide reductase. Nature Struct. Biol., 7:191–195.PubMedCrossRefGoogle Scholar
  19. 19.
    Busby, S. and Ebright, R.H., 1999, Transcription activation by catabolite activator protein (CAP). J. Mol. Biol., 293:199–213.PubMedCrossRefGoogle Scholar
  20. 20.
    Carlson, C.A., Ferguson, L.P., and Ingraham, J.L., 1982, Properties of dissimilatory nitrate reductase purified from the denitrifier Pseudomonas aeruginosa. J. Bacteriol., 151:162–171.PubMedGoogle Scholar
  21. 21.
    Chan, Y.-K., McCormick, W.A., and Watson, R.J., 1997, A new nos gene downstream from nosDFY is essential for dissimilatory reduction of nitrous oxide by Rhizobium (Sinorhizobium) meliloti. Microbiology, 143:2817–2824PubMedCrossRefGoogle Scholar
  22. 22.
    Charnock, J.M., Dreusch, A., Körner, H., Neese, F., Nelson, J., Kannt, A., Michel, H., Garner, CD., Kroneck, P.M.H., and Zumft, W.G., 2000, Structural investigations of the CuA centre of nitrous oxide reductase from Pseudomonas stutzeri by site-directed mutagenesis and X-ray absorption spectroscopy. Eur. J. Biochem., 267:1368–1381.PubMedCrossRefGoogle Scholar
  23. 23.
    Cheesman, M.R., Zumft, W.G., and Thomson, A.J., 1998, The MCD and EPR of the heme centers of nitric oxide reductase from Pseudomonas stutzeri: Evidence that the enzyme is structurally related to the heme-copper oxidases. Biochemistry, 37:3994–4000.PubMedCrossRefGoogle Scholar
  24. 24.
    Chen, P., Cabrito, I., Moura, J.J.G., Moura, I., and Solomon, E.I., 2002, Spectroscopic and electronic structure studies of the μ4-sulfide bridged tetranuclear Cuz cluster in N2O reductase: Molecular insight into the catalytic mechanism. J. Am. Chem. Soc., 124:10497–10507.PubMedCrossRefGoogle Scholar
  25. 25.
    Chinenov, Y.V, 2000, Cytochrome c oxidase assembly factors with a thioredoxin fold are conserved among prokaryotes and eukaryotes. J. Mol. Med., 78:239–242.PubMedCrossRefGoogle Scholar
  26. 26.
    Ciccarelli, F.D., Copley, R.R., Doerks, T., Russell, R.B., and Bork, P., 2002, CASH-a β-helix domain widespread among carbohydrate-binding proteins. Trends Biochem. Sci., 27:59–62.PubMedCrossRefGoogle Scholar
  27. 27.
    Coyne, M.S., Arunakumari, A., Averill, B.A., and Tiedje, J.M., 1989, Immunological identification and distribution of dissmilatory heme cd* and nonheme copper nitrite reductases in denitrifying bacteria. Appl. Environ. Microbiol., 55:2924–2931.PubMedGoogle Scholar
  28. 28.
    Cramm, R., Siddiqui, R.A., and Friedrich, B., 1997, Two isofunctional nitric oxide reductases in Alcaligenes eutrophus H16.J. Bacteriol., 179:6769–6777PubMedGoogle Scholar
  29. 29.
    Cutruzzolà, F., 1999, Bacterial nitric oxide synthesis. Biochim. Biophys. Acta, 1411:231–249.PubMedCrossRefGoogle Scholar
  30. 30.
    Cutruzzolà, F., Arese, M., Grasso, S., Bellelli, A., and Brunori, M., 1997, Mutagenesis of nitrite reductase from Pseudomonas aeruginosa: Tyrosine-10 in the c heme domain is not involved in catalysis. FEBS Lett., 412:365–369.PubMedCrossRefGoogle Scholar
  31. 31.
    Cuypers, H., Berghöfer, J., and Zumft, W.G., 1995, Multiple nosZ promoters and anaerobic expression of nos genes necessary for Pseudomonas stutzeri nitrous oxide reductase and assembly of its copper centers. Biochim. Biophys. Acta, 1264:183–190.PubMedCrossRefGoogle Scholar
  32. 32.
    Cuypers, H., Viebrock-Sambale, A., and Zumft, W.G., 1992, NosR, a membrane-bound regulatory component necessary for expression of nitrous oxide reductase in denitrifying Pseudomonas stutzeri. J. Bacteriol., 174:5332–5339.PubMedGoogle Scholar
  33. 33.
    Darwin, A.J. and Stewart, V., 1996, The NAR modulon systems: Nitrate and nitrite regulation of anaerobic gene expression. In E.C.C. Lin and A.S. Lynch (ed.), Regulation of gene expression in Escherichia coli, pp. 343–359. Chapman & Hall, New York.CrossRefGoogle Scholar
  34. 34.
    de Boer, A.P.N., Reijnders, W.N.M., Kuenen, J.G., Stouthamer, A.H., and van Spanning, R.J.M., 1994, Isolation, sequencing and mutational analysis of a gene cluster involved in nitrite reduction in Paracoccus denitrificans. Antonie van Leeuwenhoek, 66:111–127.PubMedCrossRefGoogle Scholar
  35. 35.
    Delorme, S., Philippot, L., Edel-Hermann, V., Deulvot, C., Mougel, C., and Lemanceau, P., 2003, Comparative genetic diversity of the narG, nosZ, and 16S rRNA genes in fluorescent pseudomonads. Appl. Environ. Microbiol., 69:1004–1012.PubMedCrossRefGoogle Scholar
  36. 36.
    Dooley, D.M., McGuirl, M.A., Rosenzweig, A.C., Landin, J.A., Scott, R.A., Zumft, W.G., Devlin, K, and Stephens, P.J., 1991, Spectroscopic studies of the copper sites in wild-type Pseudomonas stutzeri N2O reductase and in an inactive protein isolated from a mutant deficient in copper-site biosynthesis. Inorg. Chem., 30:3006–3011.CrossRefGoogle Scholar
  37. 37.
    Dreusch, A., Bürgisser, D.M., Heizmann, C.W., and Zumft, W.G., 1997, Lack of copper insertion into unprocessed cytoplasmic nitrous oxide reductase generated by an R20D substitution in the arginine consensus motif of the signal peptide. Biochim. Biophys. Acta, 1319:311–318.PubMedCrossRefGoogle Scholar
  38. 38.
    Dreusch, A., Riester, J., Kroneck, P.M.H., and Zumft, W.G., 1996, Mutation of the conserved Cysl65 outside the CuAdomain destabilizes nitrous oxide reductase but maintains its catalytic activity: Evidence for disulfide bridges and a putative disulfide isomerase gene. Eur. J. Biochem., 237:447–453.PubMedCrossRefGoogle Scholar
  39. 39.
    Farrar, J.A., Thomson, A.J., Cheesman, M.R., Dooley, D.M., and Zumft, W.G., 1991, A model of the copper centres of nitrous oxide reductase (Pseudomonas stutzeri), evidence from optical, EPR and MCD spectroscopy. FEBS Lett, 294:11–15.PubMedCrossRefGoogle Scholar
  40. 40.
    Farver, O., Kroneck, P.M.H., Zumft, W.G., and Pecht, I., 2003, Allosteric control of internal electron transfer in cytochrome cd 1 nitrite reductase. Proc. Natl. Acad. Sci. USA, 100:7622–7625.PubMedCrossRefGoogle Scholar
  41. 41.
    Fitz-Gibbon, S.T., Ladner, H., Kim, U.-J., Stetter, K.O., Simon, M.I., and Miller, J.H., 2002, Genome sequence of the hyperthermophilic crencharchaeon Pyrobaculum aerophilum. Proc. Natl. Acad. Sci. USA, 99:984–989.PubMedCrossRefGoogle Scholar
  42. 42.
    Forte, E., Urbani, A., Saraste, M., Sarti, P., Brunori, M., and Giuffr è, A., 2001, The cytochrome cbb3 from Pseudomonas stutzeri displays nitric oxide reductase activity. Eur. J. Biochem., 268:6486–6490.PubMedCrossRefGoogle Scholar
  43. 43.
    Fülöp, V., Moir, J.W.B., Ferguson, S.J., and Hajdu, J., 1995, The anatomy of a bifunctional enzyme: Structural basis for reduction of oxygen to water and synthesis of nitric oxide by cytochrome cd 1. Cell, 81:369–377.PubMedCrossRefGoogle Scholar
  44. 44.
    Fujiwara, T., Fukumori, Y., and Yamanaka, T., 1992, A novel terminal oxidase, cytochrome baa 3 purified from aerobically grown Pseudomonas aeruginosa: It shows a clear difference between resting state and pulsed state. J. Biochem.112:290–298PubMedGoogle Scholar
  45. 45.
    Galimand, M., Gamper, M., Zimmermann, A., and Haas, D., 1991, Positive FNR-like control of anaerobic arginine degradation and nitrate respiration in Pseudomonas aeruginosa. J. Bacteriol., 173:1598–1606.PubMedGoogle Scholar
  46. 46.
    Gamble, T.N., Betlach, M.R., and Tiedje, J.M., 1977, Numerically dominant denitrifying bacteria from world soils. Appl. Environ. Microbiol., 33:926–939.PubMedGoogle Scholar
  47. 47.
    Gardner, A.M., Heimick, R.A., and Gardner, PR., 2002, Flavorubredoxin, an inducible catalyst for nitric oxide reduction and detoxification Escherichia coli. J. Biol. Chem., 277:8172–8177.PubMedCrossRefGoogle Scholar
  48. 48.
    Glockner, A.B., Jüngst, A., and Zumft, W.G., 1993, Copper-containing nitrite reductase from Pseudomonas aureofaciens is functional in a mutationally cytochrome cd-pfree background (NirS-) of Pseudomonas stutzeri. Arch. Micrvbiol., 160:18–26.Google Scholar
  49. 49.
    Godfrey, C., Greenwood, C., Thomson, A.J., Bray, R.C., and George, G.N., 1984, Electron-paramagnetic-resonance spectroscopy studies on the dissimilatory nitrate reductase from Pseudomonas aeruginosa. Biochem. J., 224:601–608.PubMedGoogle Scholar
  50. 50.
    Gordon, E.H.J., Sjögren, T., Löfqvist, M., Richter, CD., Allen, J.W.A., Higham, C.W., Hajdu, J., Fülöp, V., and Ferguson, S.J., 2003, Structure and kinetic properties of Paracoccus pantotrophus cytochrome cd 1 nitrite reductase with the d 1 heme active site ligand tyrosine 25 replaced by serine. J. Biol. Chem., 278:11773–117PubMedCrossRefGoogle Scholar
  51. 51.
    Grüntzig, V., Nold, S.C., Zhou, J., and Tiedje, J.M., 2001, Pseudomonas stutzeri nitrite reductase gene abundance in environmental samples measured by real-time PCR. Appl Environ. Microbiol., 67:760–768.PubMedCrossRefGoogle Scholar
  52. 52.
    Härtig, E., Schiek, U., Vollack, K.-U, and Zumft, W.G., 1999, Nitrate and nitrite control of respiratory nitrate reduction in denitrifying Pseudomonas stutzeri by a two-component regulatory system homologous to NarXL of Escherichia coli. J. Bacteriol., 181:3658–3665PubMedGoogle Scholar
  53. 53.
    Härtig, E. and Zumft, W.G., 1999, Kinetics of nirSexpression (cytochrome cd 1nitrite reductase) in Pseudomonas stutzeri during the transition from aerobic respiration to denitrification: Evidence for a denitrification-specific nitrate-and nitrite-responsive regulatory system. J. Bacteriol., 181:161–166.PubMedGoogle Scholar
  54. 54.
    Haltia, T., Brown, K., Tegoni, M., Cambillau, C., Saraste, M, Mattilas, K., and Djinovic-Carugo, K., 2003, Crystal structure of nitrous oxide reductase from Paracoccus denitrificans at 1.6 Å resolution. Biochem. J., 369:77–88.PubMedCrossRefGoogle Scholar
  55. 55.
    Hasegawa, N., Arai, H., and Igarashi, Y., 2001, Two c-type cytochromes, NirM and NirC., encoded in the nir gene cluster of Pseudomonas aeruginosa act as electron donors for nitrite reductase. Biochem. Biophys. Res. Commun., 288:1223–1230.PubMedCrossRefGoogle Scholar
  56. 56.
    Hasegawa, N., Arai, H., and Igarashi, Y., 2003, Need for cytochrome bc1 complex for dissimilatory nitrite reduction of Pseudomonas aeruginosa. Biosci. Biotechnol. Biochem., 67:121–126.PubMedCrossRefGoogle Scholar
  57. 57.
    Heikkilä, M.P., Honisch, U., Wunsch, P., and Zumft, W.G., 2001, Role of the Tat transport system in nitrous oxide reductase translocation and cytochrome cd 1 biosynthesis in Pseudomonas stutzeri. J. Bacteriol., 183:1663–1671.PubMedCrossRefGoogle Scholar
  58. 58.
    Heiss, B., Frunzke, K., and Zumft, W.G., 1989, Formation of the N-N bond from nitric oxide by a membrane-bound cytochrome bc complex of nitrate-respiring (denitrifying) Pseudomonas stutzeri. J. Bacteriol., 171:3288–3297.PubMedGoogle Scholar
  59. 59.
    Hettmann, T., Anemüller, S., Borcherding, H., Mathé, L., Steinrücke, P., and Diekmann, S., 2003, Pseudomonas stutzeri soluble nitrate reductase αβ-subunit is a soluble enzyme with a similar electronic structure at the active site as the inner membrane-bound αβ γ holoenzyme. FEBS Lett., 534:143–150.PubMedCrossRefGoogle Scholar
  60. 60.
    Honisch, U. and Zumft, W.G., 2003, Operon structure and regulation of the nos gene region of Pseudomonas stutzeri, encoding an ABC-type ATPase for maturation of nitrous oxide reductase. J. Bacteriol., 185:1895–1902.PubMedCrossRefGoogle Scholar
  61. 61.
    Hutchings, M.I., Shearer, N., Wastell, S., van Spanning, R.J.M., and Spiro, S., 2000, Heterologous NNR-mediated nitric oxide signaling in Escherichia coli. J. Bacteriol., 182:6434–643PubMedCrossRefGoogle Scholar
  62. 62.
    Hutchings, M.I. and Spiro, S., 2000, The nitric oxide regulated nor promoter of Paracoccus denitrificans. Microbiology, 146:2635–2641.PubMedGoogle Scholar
  63. 63.
    Ichiki, H., Tanaka, Y., Mochizuki, K., Yoshimatsu, K., Sakurai, T., and Fujiwara, T., 2001, Purification, characterization, and genetic analysis of Cu-containing dissimilatory nitrite reductase from a denitrifying halophilic archaeon, Haloarcula marismortui. J. Bacteriol., 183:4149–4156.PubMedCrossRefGoogle Scholar
  64. 64.
    Inatomi, K.-I. and Hochstein, L.I., 1996, The purification and properties of a copper nitrite reductase from Haloferax denitrificans. Curr. Microbiol., 32:72–76.CrossRefGoogle Scholar
  65. 65.
    Ishizuka, M., Toraya, T., and Fukui, S., 1984, Purification, properties and limited proteolysis of nitrate reductase from Pseudomonas denitrificans. Biochim. Biophys. Acta, 786:133–143.CrossRefGoogle Scholar
  66. 66.
    Jüngst, A., Wakabayashi, S., Matsubara, H., and Zumft, W.G., 1991, The nirSTBM region coding for cytochrome cd 1-dependent nitrite respiration of Pseudomonas stutzeri consists of a cluster of mono-, di-, and tetraheme proteins. FEBS Lett., 279:205–209.PubMedCrossRefGoogle Scholar
  67. 67.
    Kalkowski, I. and Conrad, R., 1991, Metabolism of nitric oxide in denitrifying Pseudomonas aeruginosa and nitrate-respiring Bacillus cereus. FEMS Microbiol. Lett., 82:107–111.CrossRefGoogle Scholar
  68. 68.
    Kawasaki, S., Arai, H., Igarashi, Y., and Kodama, T., 1995, Sequencing and characterization of the downstream region of the genes encoding nitrite reductase and cytochrome c-551 (nirSM) from Pseudomonas aeruginosa: Identification of the gene necessary for biosynthesis of heme d 1. Gene, 167:87–91.PubMedCrossRefGoogle Scholar
  69. 69.
    Kawasaki, S., Arai, H., Kodama, T., and Igarashi, Y., 1997, Gene cluster of dissimilatory nitrite reductase (nir) from Pseudomonas aeruginosa: Sequencing and identification of a locus for heme d 1 biosynthesis. J. Bacteriol., 179:235–242.PubMedGoogle Scholar
  70. 70.
    Kiley, P.J. and Beinert, H., 1999, Oxygen sensing by the global regulator FNR: The role of the iron-sulfur cluster. FEMS Microbiol. Rev., 22:341–352.CrossRefGoogle Scholar
  71. 71.
    Koch, H.G., Winterstein, C., Saribas, A.S., Alben, J.O., and Daldal, R., 2000, Roles of the ccoGHIS gene products in the biogenesis of the cbb 3-type cytochrome c oxidase. J. Mol. Biol., 297:49–65.PubMedCrossRefGoogle Scholar
  72. 72.
    Körner, H., Sofia, HJ., and Zumft, W.G., 2003, Phylogeny of the bacterial superfamily of Crp-Fnr transcription regulators: Exploiting the metabolic spectrum by controlling alternative gene programs. FEMS Microbiol. Rev., 27:559–592.PubMedCrossRefGoogle Scholar
  73. 73.
    Körner, H. and Zumft, W.G., 1989, Expression of denitrification enzymes in response to the dissolved oxygen level and respiratory substrate in continuous culture of Pseudomonas stutzeri. Appl. Environ. Microbiol., 55:1670–1676.PubMedGoogle Scholar
  74. 74.
    Kraulis, P.J., 1991, MOLSCRIPT: A program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr., 24:946–950.CrossRefGoogle Scholar
  75. 75.
    Kroneck, P.M.H. and Abt, DJ., 2002, Molybdenum in nitrate reductase and nitrite oxido-reductase. In A. Siegel and H. Siegel (ed.), Metal ions in biological systems, pp. 369–403. Marcel Dekker, Inc., New York.Google Scholar
  76. 76.
    Kroneck, P.M.H., Antholine, W.A., Riester, J., and Zumft, W.G., 1988, The cupric site in nitrous oxide reductase contains a mixed-valence [Cu(II),Cu(I)] binuclear center: A multifre-quency electron paramagnetic resonance investigation. FEBS Lett., 242:70–74.PubMedCrossRefGoogle Scholar
  77. 77.
    Kundu, B. and Nicholas, D.J.D., 1985, Proton translocation during denitrification in Rhodopseudomonas sphaeroides f. denitrificans. Arch. Microbiol., 140:358–364.CrossRefGoogle Scholar
  78. 78.
    Kuypers, M.M.M., Sliekers, A.O., Lavik, G., Schmid, M., Jörgensen, B.B., Kuenen, J.G., Sinninghe Damsté, J.S., Strous, M., and Jetten, M.S.M., 2003, Anaerobic ammonium oxidation by anammox bacteria in the Black Sea. Nature, 422:608–611.PubMedCrossRefGoogle Scholar
  79. 79.
    Kwiatkowski, A.V and Shapleigh, J.P., 1996, Requirement of nitric oxide for induction of genes whose products are involved in nitric oxide metabolism in Rhodobacter sphaeroides 2.4.3: J. Biol. Chem., 271:24382–24388.PubMedCrossRefGoogle Scholar
  80. 80.
    Laratta, W.P., Choi, P.S., Tosques, I.E., and Shapleigh, J.P., 2002, Involvement of the PrrB/PrrA two-component system in nitrite respiration in Rhodobacter sphaeroides 2.4.3: Evidence for transcriptional regulation. J. Bacteriol., 184:3521–3529.PubMedCrossRefGoogle Scholar
  81. 81.
    Lee, D.Y., Ramos, A., Macomber, L., and Shapleigh, J.P., 2002, Taxis response of various denitrifying bacteria to nitrate and nitrite. Appl. Environ. Microbiol., 68:2140–2147.PubMedCrossRefGoogle Scholar
  82. 82.
    Lee, H.S., Abdelal, A.H.T., Clark, M.A., and Ingraham, J.L., 1991, Molecular characterization of nosA, a Pseudomonas stutzeri gene encoding an outer membrane protein required to make copper-containing N2O reductase. J. Bacteriol., 173:5406–5413.PubMedGoogle Scholar
  83. 83.
    Liu, H.-R, Takio, S., Satoh, T., and Yamamoto, I., 1999, Involvement in denitrification of the napKEFDABC genes encoding the periplasmic nitrate reductase system in the denitrifying phototrophic bacterium Rhodobacter sphaeroides f. sp. denitriflcans. Biosci. Biotechnol. Biochem., 63:530–536.CrossRefGoogle Scholar
  84. 84.
    Matsushita, K., Shinagawa, E., Adachi, O., and Ameyama, M., 1982, o-Type cytochrome oxidase in the membrane of aerobically grown Pseudomonas aeruginosa. FEBS Lett., 139:255–258.PubMedCrossRefGoogle Scholar
  85. 85.
    Mattatall, N.R., Jazairi, J., and Hill, B.C., 2000, Characterization of YpmQ, an accessory protein required for the expression of cytochrome c oxidase in Bacillus subtilis. J. Biol. Chem., 275:28802–28809.PubMedCrossRefGoogle Scholar
  86. 86.
    McEwan, A.G., Greenfield, A.J., Wetzstein, H.G., Jackson, J.B., and Ferguson, S.J., 1985, Nitrous oxide reduction by members of the family Rhodospirillaceae and the nitrous oxide reductase of Rhodopseudomonas capsulata. J. Bacteriol., 164:823–830.PubMedGoogle Scholar
  87. 87.
    McEwan, A.G., Lewin, A., Davy, S.L., Boetzel, R., Leech, A., Walker, D., Wood, T., and Moore, G.R., 2002, PrrC from Rhodobacter sphaeroides, a homologue of eukaryotic Sco proteins, is a copper-binding protein and may have a thiol-disulfide oxidoreductase activity. FEBS Lett., 518:10–16.PubMedCrossRefGoogle Scholar
  88. 88.
    McGuirl, M.A., Bollinger, J.A., Cosper, N., Scott, R.A., and Dooley, D.M., 2001, Expression, purification, and characterization of NosL, a novel Cu(I) protein of the nitrous oxide reductase (nos) gene cluster. J. Biol. Inorg. Chem., 6:189–195.PubMedCrossRefGoogle Scholar
  89. 89.
    McGuirl, M.A., Nelson, L.K., Bollinger, J.A., Chan, Y.-K., and Dooley, D.M., 1998, The nos (nitrous oxide reductase) gene cluster from the soil bacterium Achromobacter cycloclastes: Cloning, sequence analysis, and expression. J. Inorg. Biochem., 70:155–169.PubMedCrossRefGoogle Scholar
  90. 90.
    Mesa, S., Bedmar, E., Chanfon, A., Hennecke, H., and Fischer, H.-M., 2003, Bradyrhizobium japonicum NnrR, a denitrification regulator, expands the FixLJ-FixK2 regulatory cascade. J. Bacteriol., 185:3978–3982.PubMedCrossRefGoogle Scholar
  91. 91.
    Moir, J.W.B. and Wood, N.J., 2001, Nitrate and nitrite transport in bacteria. Cell. Mol. Life Sci., 58:215–224.PubMedCrossRefGoogle Scholar
  92. 92.
    Moreno-Vivián, C., Cabello, P., Martínez-Luque, M, Blasco, R., and Castillo, F., 1999, Prokaryotic nitrate reduction: Molecular properties and functional distinction among bacterial nitrate reductases. J. Bacteriol., 181:6573–6584.PubMedGoogle Scholar
  93. 93.
    Moura, I. and Moura, J.J.G., 2001, Structural aspects of denitrifying enzymes. Curr. Opin. Chem. Biol., 5:168–175.PubMedCrossRefGoogle Scholar
  94. 94.
    Nurizzo, D., Silvestrini, M.-C., Mathieu, M., Cutruzzolà, F., Bourgeois, D., Fülöp, V., Hajdu, J., Brunori, M, Tegoni, M., and Cambillau, C., 1997, N-terminal arm exchange is observed in the 2.15 Å crystal structure of oxidized nitrite reductase from Pseudomonas aeruginosa. Structure, 5:1157–1171.PubMedCrossRefGoogle Scholar
  95. 95.
    O’Gara, J.P. and Kaplan, S., 1997, Evidence for the role of redox carriers in photosynthesis gene expression and carotenoid biosynthesis in Rhodobacter sphaeroides 2.4.1. J. Bacteriol., 179:1951–1961.PubMedGoogle Scholar
  96. 96.
    Palmedo, G., Seither, P., Körner, H., Matthews, J.C., Burkhalter, R.S., Timkovich, R., and Zumft, W.G., 1995, Resolution of the nirD locus for heme d 1 synthesis of cytochrome cd 1 (respiratory nitrite reductase) from Pseudomonas stutzeri. Eur. J. Biochem., 232:737–746.PubMedCrossRefGoogle Scholar
  97. 97.
    Philippot, L., 2002, Denitrifying genes in bacterial and archaeal genomes. Biochim. Biophys. Acta, 1577:355–376.PubMedCrossRefGoogle Scholar
  98. 98.
    Philippot, L., Clays-Josserand, A., Lensi, R., Trinsoutreau, I., Normand, P., and Potier, P., 1997, Purification of the dissimilative nitrate reductase of Pseudomonas fluorescens and the cloning and sequencing of its corresponding genes. Biochim. Biophys. Acta, 1350:272–276.PubMedCrossRefGoogle Scholar
  99. 99.
    Philippot, L., Mirleau, P., Mazurier, S., Siblot, S., Hartmann, A., Lemanceau, P., and Germon, J.C., 2001, Characterization and transcriptional analysis of Pseudomonas fluorescens denitrifying clusters containing the nar, nir, nor, and nos genes. Biochim. Biophys. Acta, 1517:436–440.PubMedCrossRefGoogle Scholar
  100. 100.
    Pitcher, R.S., Cheesman, M.R., and Watmough, N.J., 2002, Molecular and spectroscopic analysis of the cytochrome cbb 3 oxidase from Pseudomonas stutzen. J. Biol. Chem., 277:31474–31483.PubMedCrossRefGoogle Scholar
  101. 101.
    Pohlmann, A., Cramm, R., Schmelz, K., and Friedrich, B., 2000, A novel NO-responding regulator controls the reduction of nitric oxide in Ralstonia eutropha. Mol. Microbiol., 38:626–638.PubMedCrossRefGoogle Scholar
  102. 102.
    Poole, R.K. and Hughes, M.N., 2000, New functions for the ancient globin family: Bacterial responses to nitric oxide and nitrosative stress. Mol. Microbiol., 36:775–783.PubMedCrossRefGoogle Scholar
  103. 103.
    Potter, L., Angove, H., Richardson, D., and Cole, J., 2001, Nitrate reduction in the periplasm of gram-negative bacteria. Adv. Microb. Physiol., 45:51–112.PubMedCrossRefGoogle Scholar
  104. 104.
    Preisig, O., Zufferey, R., and Hennecke, H., 1996, The Bradyrhizobium japonicum fixGHIS genes are required for the formation of the high-affinity cbb 3 — type cytochrome oxidase. Arch. Microbiol., 165:297–305.PubMedCrossRefGoogle Scholar
  105. 105.
    Priemé, A., Braker, G., and Tiedje, J.M., 2002, Diversity of nitrite reductase (nirK and nirS) gene fragments in forested upland and wetland soils. Appl. Environ. Microbiol., 68:1893–1900.PubMedCrossRefGoogle Scholar
  106. 106.
    Prudêncio, M., Pereira, A.S., Tavares, P., Besson, S., Cabrito, I., Brown, K., Samyn, B., Devreese, B., van Beeumen, J., Rusnak, E, Fauque, G., Moura, J.J.G., Tegoni, M., Cambillau, C., and Moura, I., 2000, Purification, characterization, and preliminary crystallographic study of copper-containing nitrous oxide reductase from Pseudomonas nautica 617. Biochemistry, 39:3899–3907.PubMedCrossRefGoogle Scholar
  107. 107.
    Rasmussen, T., Berks, B.C., Butt, J.N., and Thomson, A.J., 2002, Multiple forms of the catalytic centre, Cuz, in the enzyme nitrous oxide reductase from Paracoccus pantotropha. Biochem. J., 364:807–815.PubMedCrossRefGoogle Scholar
  108. 108.
    Rasmussen, T., Berks, B.C., Sanders-Loehr, J., Dooley, D.M., Zumft, W.G., and Thomson, A.J., 2000, The catalytic center in nitrous oxide reductase, Cuz, is a copper sulfide cluster. Biochemistry, 39:12753–12756.PubMedCrossRefGoogle Scholar
  109. 109.
    Ray, A. and Williams, H.D., 1996, A mutant of Pseudomonas aeruginosa that lacks c-type cytochromes has a functional cyanide-insensitive oxidase. FEMS Microbiol. Lett., 135:123–129.PubMedCrossRefGoogle Scholar
  110. 110.
    Ray, A. and Williams, H.D., 1997, The effects of mutation of the anr gene on the aerobic respiratory chain of Pseudomonas aeruginosa. FEMS Microbiol. Lett., 156:227–232.PubMedCrossRefGoogle Scholar
  111. 111.
    Richardson, D.J., Bell, L.C., McEwan, A.G., Jackson, J.B., and Ferguson, S.J., 1991, Cytochrome c 2 is essential for electron transfer to nitrous oxide reductase from physiological substrates in Rhodobacter capsulatus and can act as an electron donor to the reductase in vitro, correlation with photoinhibition studies. Eur. J. Biochem., 199:677–683.PubMedCrossRefGoogle Scholar
  112. 112.
    Rösch, C., Mergel, A., and Bothe, H., 2002, Biodiversity of denitrifying and dinitrogen-fixing bacteria in an acid forest soil. Appl. Environ. Microbiol., 68:3818–3829.PubMedCrossRefGoogle Scholar
  113. 113.
    Roh, J.H. and Kaplan, S., 2000, Genetic and phenotypic analyses of the rdx locus of Rhodobacter sphaeroides 2.4.1. J. Bacteriol., 182:3475–3481.PubMedCrossRefGoogle Scholar
  114. 114.
    Roldán, M.D., Sears, HJ., Cheesman, M.R., Ferguson, S.J., Thomson, A.J., Berks, B.C., and Richardson, DJ., 1998, Spectroscopic characterization of a novel multiheme otype cytochrome widely implicated in bacterial electron transport. J. Biol. Chem., 273:28785–28790.PubMedCrossRefGoogle Scholar
  115. 115.
    Saraste, M. and Castresana, J., 1994, Cytochrome oxidase evolved by tinkering with denitri-fication enzymes. FEBS Lett., 341:1–4.PubMedCrossRefGoogle Scholar
  116. 116.
    Saunders, N.F.W., Hornberg, J.J., Reijnders, W.N.M., Westerhoff, H.V, de Vries, S., and van Spanning, R.J.M., 2000, The NosX and NirX proteins of Paracoccus denitrificans are functional homologues: Their role in maturation of nitrous oxide reductase. J. Bacteriol., 182:5211–5217.PubMedCrossRefGoogle Scholar
  117. 117.
    Saunders, N.F.W., Houben, E.N.G., Koefoed, S., de Weert, S., Reijnders, W.N.M., Westerhoff, H.V, de Boer, A.P.N., and van Spanning, R.J.M., 1999, Transcription regulation of the nir gene cluster encoding nitrite reductase of Paracoccus denitrificans involves NNR and Nirl, a novel type of membrane protein. Mol. Microbiol., 34:24–36.PubMedCrossRefGoogle Scholar
  118. 118.
    Siddiqui, R.A., Warnecke-Eberz, U., Hengsberger, A., Schneider, B., Kostka, S., and Friedrich, B., 1993, Structure and function of a periplasmic nitrate reductase in Alcaligenes eutrophus H16. J. Bacteriol., 175:5867–5876.PubMedGoogle Scholar
  119. 119.
    Silvestrini, M.C., Cutruzzolà, F., D’Alessandro, R., Brunori, M., Fochesato, N., and Zennaro, E., 1992, Expression of Pseudomonas aeruginosa nitrite reductase in Pseudomonas putida and characterization of the recombinant protein. Biochem. J., 285:661–666.PubMedGoogle Scholar
  120. 120.
    Silvestrini, M.C., Galeotti, C.L., Gervais, M., Schininà, E., Barra, D., Bossa, F, and Brunori, M., 1989, Nitrite reductase from Pseudomonas aeruginosa: Sequence of the gene and the protein. FEBS Lett., 254:33–38.PubMedCrossRefGoogle Scholar
  121. 121.
    Skovran, E. and Downs, D.M., 2003, Lack of the ApbC or ApbE protein results in a defect in Fe-S cluster metabolism in Salmonella enterica serovar Typhimurium. J. Bacteriol., 185:98–106.PubMedCrossRefGoogle Scholar
  122. 122.
    Smidt, H., van Leest, M., van der Oost, J., and de Vos, W.M., 2000, Transcriptional regulation of the cpr gene cluster in ortho-chlorophenol-respiring Desulfitobacterium dehalogenans. J. Bacteriol., 182:5683–5691PubMedCrossRefGoogle Scholar
  123. 123.
    Smith, G.B. and Tiedje, J.M., 1992, Isolation and characterization of a nitrite reductase gene and its use as a probe for denitrifying bacteria. Appl. Environ. Microbiol., 58:376–384.PubMedGoogle Scholar
  124. 124.
    Sofia, HJ., Chen, G., Hetzler, B.G., Reyes-Spindola, J.F., and Miller, N.E., 2001, Radical SAM, a novel protein superfamily linking unresolved steps in familiar biosynthetic pathways with radical mechanisms: Functional characterization using new analysis and information visualization methods. Nucleic Acids Res., 29:1097–1106.PubMedCrossRefGoogle Scholar
  125. 125.
    Spröer, C., Lang, E., Hobeck, P., Burghardt, J., Stackebrandt, E., and Tindall, B.J., 1998, Transfer of Pseudomonas nautica to Marinobacter hydrocarbonoclasticus. Int. J. Syst. Bacteriol., 48:1445–1448.CrossRefGoogle Scholar
  126. 126.
    Stover, C.K., Pham, X.Q., Erwin, A.L., Mizoguchi, S.D., Warrener, P., Hickey, M.J., Brinkman, F.S.L., Hufhagle, W.O., Kowalik, D.J., Lagrou, M., Garber, R.L., Goltry, L., Tolentino, E., Westbrock-Wadman, S., Yuan, Y., Brody, L.L., Coulter, S.N., Folger, K.R., Kas, A., Larbig, K., Lim, R., Smith, K., Spencer, D., Wong, G.K.-S., Wu, Z., Paulsen, LT., Reizer, J., Saier, M.H., Hancock, R.E.W., Lory, S., and Olson, M.V., 2000, Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature, 406:959–964.PubMedCrossRefGoogle Scholar
  127. 127.
    Suharti, Strampraad, M.J.F., Schröder, I., and de Vries, S., 2001, A novel copper A containing menaquinol NO reductase from Bacillus azotoformans. Biochemistry, 40:2632–2639.PubMedCrossRefGoogle Scholar
  128. 128.
    Thöny-Meyer, L., 1997, Biogenesis of respiratory cytochromes in bacteria. Microbiol. Mol. Biol. Rev., 61:337–376.PubMedGoogle Scholar
  129. 129.
    Tosques, I.E., Kwiatkowski, A.V, Shi, J., and Shapleigh, J.P., 1997, Characterization and regulation of the gene encoding nitrite reductase in Rhodobacter sphaeroides 2.4.3. J. Bacteriol., 179:1090–1095.PubMedGoogle Scholar
  130. 130.
    Tosques, I.E., Shi, J., and Shapleigh, J.P., 1996, Cloning and characterization of nnrR, whose product is required for the expression of proteins involved in nitric oxide metabolism in Rhodobacter sphaeroides 2.4.3. J. Bacteriol., 178:4958–4964.PubMedGoogle Scholar
  131. 131.
    Urata, K., Shimada, K., and Satoh, T., 1983, Proton translocation associated with denitrification in a photodenitrifier, Rhodopseudomonas sphaeroides forma sp. denitrificans. Plant Cell Physiol., 24:501–508.Google Scholar
  132. 132.
    Urbani, A., Gemeinhardt, S., Warne, A., and Saraste, M., 2001, Properties of the detergent solubilised cytochrome c oxidase (cytochrome cbb 3) purified from Pseudomonas stutzeri. FEBS Lett., 508:29–35.PubMedCrossRefGoogle Scholar
  133. 133.
    van der Oost, J., de Boer, A.P.N., de Gier, J.-W.L., Zumft, W.G., Stouthamer, A.H., and van Spanning, R.J.M., 1994, The heme-copper oxidase family consists of three distinct types of terminal oxidases and is related to nitric oxide reductase. FEMS Microbiol. Lett., 121:1–10.PubMedCrossRefGoogle Scholar
  134. 134.
    van Spanning, R.J.M., de Boer, A.P.N., Reijnders, W.N.M., Westerhoff, H.V, Stouthamer, A.H., and van der Oost, J., 1997, FnrP and NNR of Paracoccus denitrificans are both members of the FNR family of transcriptional activators but have distinct roles in respiratory adaptation in response to oxygen limitation. Mol. Microbiol., 23:893–907.PubMedCrossRefGoogle Scholar
  135. 135.
    Viebrock, A. and Zumft, W.G., 1988, Molecular cloning, heterologous expression, and primary structure of the structural gene for the copper enzyme nitrous oxide reductase from denitrifying Pseudomonas stutzen. J. Bacteriol., 170:4658–4668.PubMedGoogle Scholar
  136. 136.
    Vijgenboom, E., Busch, J.E., and Canters, G.W., 1997, In vivo studies disprove an obligatory role of azurin in denitrification in Pseudomonas aeruginosa and show that azu expression is under control of RpoS and ANR. Microbiology, 143:2853–2863.PubMedCrossRefGoogle Scholar
  137. 137.
    Vollack, K.-U, Härtig, E., Körner, H., and Zumft, W.G., 1999, Multiple transcription factors of the FNR family in denitrifying Pseudomonas stutzerv. Characterization of four fnr-like genes, regulatory responses and cognate metabolic processes. Mol. Microbiol., 31:1681–1694.PubMedCrossRefGoogle Scholar
  138. 138.
    Vollack, K.-U., Xie, J., Härtig, E., Römling, U., and Zumft, W.G., 1998, Localization of denitrification genes on the chromosomal map of Pseudomonas aeruginosa. Microbiology, 144:441–448.PubMedCrossRefGoogle Scholar
  139. 139.
    Vollack, K.-U. and Zumft, W.G., 2001, Nitric oxide signaling and transcriptional control of denitrification genes in Pseudomonas stutzeri. J. Bacteriol., 183:2516–2526.PubMedCrossRefGoogle Scholar
  140. 140.
    Wagner, VE., Bushneil, D., Passador, L., Brooks, A.I., and Iglewski, B.H., 2003, Microarray analysis of Pseudomonas aeruginosa quorum-sensing regulons: Effects of growth phase and environment. J. Bacteriol., 185:2080–2095.PubMedCrossRefGoogle Scholar
  141. 141.
    Warren, M.J., Bolt, EX., Roessner, CA., Scott, A.I., Spencer, J.B., and Woodcock, S.C., 1994, Gene dissection demonstrates that the Escherichia coli cysG gene encodes a multifunctional protein. Biochem. J., 302:837–844.PubMedGoogle Scholar
  142. 142.
    Watmough, N.J., Butland, G., Cheesman, M.R., Moir, J.W.B., Richardson, D.J., and Spiro, S., 1999, Nitric oxide in bacteria: Synthesis and consumption. Biochim. Biophys. Acta, 1411:456–474.PubMedCrossRefGoogle Scholar
  143. 143.
    Williams, P.A., Fülöp, V., Garman, E.F., Saunders, N.F.W., Ferguson, S.J., and Hajdu, J., 1997, Haem-ligand switching during catalysis in crystals of a nitrogen-cycle enzyme. Nature, 389:406–412.PubMedCrossRefGoogle Scholar
  144. 144.
    Williams, P.A., Fülöp, V., Leung, Y.-C., Chan, C., Moir, J.W.B., Howlett, G., Ferguson, S.J., Radford, S.E., and Hajdu, J., 1995, Pseudospecific docking surfaces on electron transfer proteins as illustrated by pseudoazurin, cytochrome c 550 and cytochrome cd 1 nitrite reductase. Nature Struct. Biol., 2:975–982.PubMedCrossRefGoogle Scholar
  145. 145.
    Wilmanns, M., Lappalainen, P., Kelly, M., Sauer-Eriksson, E., and Saraste, M., 1995, Crystal structure of the membrane-exposed domain from a respiratory quinol oxidase complex with an engineered dinuclear copper center. Proc. Natl. Acad. Sci. USA, 92:11955–11959.PubMedCrossRefGoogle Scholar
  146. 146.
    Wood, N.J., Alizadeh, T., Bennett, S., Pearce, J., Ferguson, S.J., Richardson, D.J., and Moir, J.W.B., 2001, Maximal expression of membrane-bound nitrate reductase in Paracoccus is induced by nitrate via a third FNR-like regulator named NarR. J. Bacteriol., 183:3606–3613.PubMedCrossRefGoogle Scholar
  147. 147.
    Wu, W and Chang, C.K., 1987, Structure of “dioneheme.” Total synthesis of the green heme prosthetic group in cytochrome cd 1 dissimilatory nitrite reductase. J. Am. Chem. Soc., 109:3149–3150.CrossRefGoogle Scholar
  148. 148.
    Wunsch, P., Herb, M., Wieland, H., Schiek, U.M., and Zumft, W.G., 2003, Requirements for CuA and Cu-S center assembly of nitrous oxide reductase deduced from complete periplasmic enzyme maturation in the nondenitrifier Pseudomonas putida. J. Bacteriol., 185:887–896.PubMedCrossRefGoogle Scholar
  149. 149.
    Yamanaka, T., ed., 1992, The Biochemistry of Bacterial Cytochromes, Springer-Verlag KG, Berlin, Germany.Google Scholar
  150. 150.
    Ye, R.W., Arunakumari, A., Averill, B.A., and Tiedje, J.M., 1992, Mutants of Pseudomonas fluorescens deficient in dissimilatory nitrite reduction are also altered in nitric oxide reduction. J. Bacteriol., 174:2560–2564.PubMedGoogle Scholar
  151. 151.
    Ye, R.W., Fries, M.R., Bezborodnikov, S.G., Averill, B.A., and Tiedje, J.M., 1993, Characterization of the structural gene encoding a copper-containing nitrite reductase and homology of this gene to DNA of other denitrifiers. Appl. Environ. Microbiol., 59:250–254.PubMedGoogle Scholar
  152. 152.
    Ye, R.W., Haas, D., Ka, J.-O., Krishnapillai, V., Zimmermann, A., Baird, C., and Tiedje, J.M., 1995, Anaerobic activation of the entire denitrification pathway in Pseudomonas aeruginosa requires Anr, an analog of Fnr. J. Bacteriol., 177:3606–3609.PubMedGoogle Scholar
  153. 153.
    Yoneyama, H. and Nakae, T., 1996, Protein C (OprC) of the outer membrane of Pseudomonas aeruginosa is a copper-regulated channel protein. Microbiology, 142:2137–2144.PubMedCrossRefGoogle Scholar
  154. 154.
    Yoshinari, T, 1980, N2O reduction by Vibrio succinogenes. Appl. Environ. Microbiol., 39:81–84.PubMedGoogle Scholar
  155. 155.
    Zannoni, D., 1989, The respiratory chains of pathogenic pseudomonads. Biochim. Biophys. Acta, 975:299–316.PubMedCrossRefGoogle Scholar
  156. 156.
    Zhang, C.-S. and Hollocher, T.C., 1993, The reaction of reduced cytochromes c with nitrous oxide reductase of Wolinella succinogenes. Biochim. Biophys. Acta., 1142:253–261CrossRefGoogle Scholar
  157. 157.
    Zumft, W.G., 1992, The denitrifying prokaryotes. In A. Balows, H.G. Trüper, M. Dworkin, W. Harder, and K.-H. Schleifer (ed.), The Prokaryotes. A Handbook on the Biology of Bacteria: Ecophysiology, Isolation, Identification, Applications, pp. 554–582. Springer-Verlag, New York.Google Scholar
  158. 158.
    Zumft, W.G., 1993, The biological role of nitric oxide in bacteria. Arch. Microbiol., 160:253–264.PubMedCrossRefGoogle Scholar
  159. 159.
    Zumft, W.G., 1997, Cell biology and molecular basis of denitrification. Microbiol. Mol. Biol. Rev., 61:533–616.Google Scholar
  160. 160.
    Zumft, W.G., 2002, Nitric oxide signaling and NO dependent transcriptional control in bacterial denitrification by members of the FNR-CRP regulator family. J. Mol. Microbiol. Biotechnol., 4:277–286.PubMedGoogle Scholar
  161. 161.
    Zumft, W.G., Braun, C., and Cuypers, H., 1994, Nitric oxide reductase from Pseudomonas stutzeri: Primary structure and gene organization of a novel bacterial cytochrome bc complex. Eur. J. Biochem., 219:481–490.PubMedCrossRefGoogle Scholar
  162. 162.
    Zumft, W.G., Döhler, K., Körner, H., Löchelt, S., Viebrock, A., and Frunzke, K., 1988, Defects in cytochrome cd 1-dependent nitrite respiration of transposon Tn5-induced mutants from Pseudomonas stutzeri. Arch. Microbiol., 149:492–498.PubMedCrossRefGoogle Scholar
  163. 163.
    Zumft, W.G., Dreusch, A., Löchelt, S., Cuypers, H., Friedrich, B., and Schneider, B., 1992, Derived amino acid sequences of the nosZ gene (respiratory N2O reductase) from Alcaligenes eutrophus, Pseudomonas aeruginosa and Pseudomonas stutzeri reveal potential copper-binding residues: Implications for the CuA site of N2O reductase and cytochrome-c oxidase. Eur. J. Biochem., 208:31–40.PubMedCrossRefGoogle Scholar
  164. 164.
    Zumft, W.G., Gotzmann, D.J., and Kroneck, P.M.H., 1987, Type 1, blue copper proteins constitute a respiratory nitrite-reducing system in Pseudomonas aureofaciens. Eur. J. Biochem., 168:301–307.PubMedCrossRefGoogle Scholar
  165. 165.
    Zumft, W.G. and Kroneck, P.M.H., 1996, Metal-center assembly of the bacterial multi-copper enzyme nitrous oxide reductase. Adv. Inorg. Biochem., 11:193–221.Google Scholar
  166. 166.
    Zumft, W.G. and Matsubara, T., 1982, A novel kind of multi-copper protein as terminal oxidoreductase of nitrous oxide respiration in Pseudomonas perfectomarinus. FEBS Lett., 148:107–112.CrossRefGoogle Scholar
  167. 167.
    Zumft, W.G., Viebrock-Sambale, A., and Braun, C., 1990, Nitrous oxide reductase from denitrifying Pseudomonas stutzeri: Genes for copper-processing and properties of the deduced products, including a new member of the family of ATP/GTP-binding proteins. Eur. J. Biochem., 192:591–599.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • Walter G. Zumft
    • 1
  1. 1.Lehrstuhl für MikrobiologieUniversität KarlsruheKarlsruheGermany

Personalised recommendations